
AO-A0'08 SO INGRTDSRIE ICSADIOCAFB1/
STAMMER2 PRODUCTION SYSTEM FOR TACTICAL SITUATION ASSESSMENT. V-ETC(U)

Lo ' OCT 79 0 C MCCALL, P H MORRIS, D F KIBLER N00123-76-C-0172
CUNCLASSIFIED NOSC-T-298-VOL 1 NL

7m hAh408 SO NEGAE E RVIEh SNDEh E /h I/

1111l ,_o 1.2
36

111 .1111120

4

MICROCOPY RESOLUTION TEST CHART

NAI ONAL BUR[AU, Of STANDARDS-I9b3-,1

00

DTIC
, ~lr-IEr TE~n

C Technical Document 298

STAMMER2 PRODUCTION SYSTEM FOR
TACTICAL SITUATION ASSESSMENT

Volume 1 - Design description
o(Volume 2 consists of the code)

DC McCall (NOSC Task Leader)
cc PH Morris, DF Kibler, RJ Bechtel
"(SDC Integrated Services)
r. Contract N00123-76-C-0172

~October 1979

Prepared for
Naval Electronic Systems Command (NAVELEX 330)

Washington DC 20360

Approved for public release; distribution unlimited

* NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CALIFORNIA 92152

80 5 7060
L ,r,,-

NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

RR GAVAZZI, CAPT, USN HL BLOOD
Commander Technical Director

ADMINISTRATIVE INFORMATION

Work was performed by the Tactical Command and Control Division (Code 824) as a
part of the Tactical Situation Assessment (TSA) problem under Program Element 6272 IN,
Project F21201, Task Area XF21201 100 (NOSC 824-CC18). This TSA task is a part of the
Command Control Block Program sponsored by NAVELEX, Code 330-the Command and
Control Division of Research and Technology Directorate, NAVELEX Code 03.

This document was written by PH Morris, DF Kibler, and RJ Bechtel, of SDC
Integrated Services, under Contract N001 23-76-C-0172. It covers work from June through
September 1979 and was approved for publication 28 November 1979.

Released by Under authority of
RC Kolb, Head JH Maynard. Head
Tactical Command and Command Control-Electronic Warfare

Control Division Systems and Technology Department

2,'

IINCL.AqSIF lED
%ECUO'ITY CLASSIFICATION OF THIS PAGE (When, Dais Entered) __________________

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

UMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S "ATALOr

NOSC echnical Document 298 (TI? 298)" & -

STAMMER2 fRODUCTION SYSTEM FOR TACTICAL SITUATION Techncal ocument
ASSESSMENTO -- /N&Sep 7 9 &

- s. PERFORMING ORG. REPORT NUMBVolume ldr Design ,4escription

.A -lC o cUMaERl',

7 HiblerRJ Bechtel

9. PERFORMING ORGANIZATION NAME AND ADDRESS to. PROGRAM ELEMENT. PROjECT, TASK
AREA& WORK NUMBERS

Naval Ocean Systems Center621NF21
SanDiego CA 92152 / lfXF21201100OONOSC824"CCI8)

II. CONTROLLING OFFICE NAME AND ADDRESS

Naval Electronic Systems Command (NAVELEX 330) // OctdwIu 7 9

Washington DC 20360 13 NUBRO .*6,

t4. MONITORING AGENCY NAME & ADDRESS(II different from Controllng Office) IS. SECURITY CLtS. Ia l-Wt tel)

Unclassified

ISa. DECL ASSI FIC ATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebstract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

* =.19. KEY WORDS (Continue on reverse side if noceeary and identify by block number)

STAMMER2 Tactical analyses
Production systems Correlation techniques

* / Rule-based inference systems Merchant detection
Confidence factors

-20. ABSTRACT (Continue on reveree aide if neceseay end identify by block number)

STAMMER2 is a revised version of STAMMER, a System for Tactical Assessment of Multisource Messages,
Even Radar. STAMMER was created as part of an investigation of new correlation methodologies, and served
as a testbed for explorations of applications of rule-based inference systems to the tactical situation assessment
(TSA) problem. STAMMER concentrated on the specific task of merchant detection from radar and external
messages. Experience with STAMMER revealed areas for improvement, which have led to the creation of
STAMMER2. In addition to several changes in the underlying rule mechanisms used, the enhancement found in

• STAMMER2 arose out of a desire for greater generality and flexibility in the demonstration system, the explanation
system, and the range of acceptable inputs to the system. STAMMER2 should prove to be a more useful system. -

DO IJN ,s1 1473 EDITION Ol I NOV 6S 1S OBSOLETE UNCLASSIFIED
S/N 0102-LF-014-6601 SEtCURITY CLASSIfiCATION OP' THIS PAGE (WlehBet Dmtieved)

• -
\\&

[JUNCI..ARIFIED

SECURITY CLASSIFICATION OF THIS PAGE (flltla Data Entered)

20. ABSTRACT (Continued)

for testing various rule/scenario collections. During the development that led to STAMMER2, further issues
in the design of rule-based inference systems for use in support of C3 activities have become apparent and they are
discussed. This volume consists of the design description. Volume 2 consists of the code.

.~:i L

'1 ce
,Jutifcatio~n --

Met Speal ;,/Z

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(I~un Des EnatoeE)

Table of Contents--Volume 1

1. Introduction 1

1.1 Purpose 1
1.2 Overview of Changes 1
1.3 Significance of STAMMER2 to Artificial 4

Intelligence

2. Design and Implementation Issues 7

2.1 Introduction 7
2.2 Memory 9
2.3 Rules and the Rule Interpreter 14
2.4 Confidence 21
2.5 Oracles 23
2.6 The Explanation System 24
2.7 Position Functions 25
2.8 The Message Monitor and the LWES Connection 25

3. User's Handbook 27

3.1 Sample Run 27
3.2 User's Guide to STAMM4ER2 35
3.3 User's Guide to the Explanation System 35
3.4 Programmer's Guide to QH 39
3.5 Programmer's Guide to the Assertion 41

Prettyprinter
3.6 LWES and Modifications 43

4. Directions for Future Work 51

Appendix I. Rules in the Demonstration System 55

Appendix II. Technical Data Base Content 67

Appendix III. Format of LWES-Produced Files 71

Appendix IV. Mathematical Techniques 73

References 75

Index 77

-

4 -i .

CHAPTER 1
INTRODUCTION

1.1 Purpose

STAMMER2 is a revised version of STAMMERI , a System for
Tactical Assessment of Multisource Messages, Even Radar.
STAMMER was created as part of an investigation of new
correlation methodologies, and served as a testbed for
explorations of applications of rule-based inference systems
to the tactical situation assessment (TSA) problem. STAMMER
concentrated on the specific task of merchant detection from
radar and external messages.

Experience with STAMMER revealed areas for improvement,
which have lead to the creation of STAMMER2. In addition to
several changes in the underlying rule mechanisms used, the
enhancements found in STAMMER2 arose out of a desire for
greater generality and flexibility in the demonstration
system, the explanation system, and the range of acceptable
inputs to the system.

STAMMER2 should prove to be a more useful system for
testing various rule/scenario collections. During the
development that lead to STAMMER2, further issues in the
design of rule-based inference systems for use in support of
C3 activities have become apparent and are discussed at the
end of this report.

$1 1.2 Overview of Changes

in converting STAMMER to STAMMER2, the following changes
have been made.

1
NOSC TD 252, STAMMER: System for Tactical Assessment of

Multisource Messages, Even Radar, by RJ Bechtel and PH
Morris, May, 1979.

I,
i I , ,- - -...., J - - -'1

1.2.1 In memory

o Assertions may now be n-tuples rather than only
triples.

o Nonatomic elements are permitted in assertions.

o The internal representation of assertions has
changed, using somewhat more space for a
significant decrease in retrieval time.

o Retrievals can now bind an arbitrary number of
variables rather than the single one of the old
system.

1.2.2 In the oracles

o Certain distinguished oracles may now bind
arguments.

1.2.3 In the confidence system

o The confidence of assertions which satisfy negative
conditions is now included in the confidence
calculated for derived assertions.

o Possible derivation cycle traps are detected and
avoided, and the loops are treated appropriately in
confidence calculation.

o The confidence calculation process has been revised
to more closely match that used by MYCIN'.
Remaining differences arise from the differences in
interpreters.

2
Computer-Based Medical Consultations: MYCIN, by EH

Shortliffe; Elsevier, 1976.

2

1.2.4 In the rules and rule interpreter

o ±he format of rule conditions and actions has
changed slightly.

o Rule conditions may now contain the connectives
NOT and OR.

o Rule actions may now include disjunctive
conclusions and report generation calls.

ro The rule interpreter centers on a new data type,
called streams, which simulate parallel
processing and permit "automatic" suspension and
resumption of processes.

o Rule interpretation is no longer an explicit part
of the execution cycle.

1.2.5 In the explanation system

o Slightly different questions and formats.

o Use of a replacement for ASKUSER to improve
response and correction time and reduce user
frustration.

o Revision of rule explanation formats.

o Addition of graphics to explanation and
justification of some rules.

o A more flexible assertion prettyprinter.

1.2.6 In the message receipt system

o modification to LWES to permit its use as a
scenario generator.

o Revisions to the message monitor to permit use of
LWES generated scenarios.

o Messages are read from disk, rather than absorbing
.4' memory space.

o Messages from new sensor types (sonar, EW) are
permitted.

3

16.&.

1.2.7 Elsewhere

o A number of smaller test scenarios have been
created, permitting the demonstration of the system
and/or particular rules without the need to step
through a long demonstration.

o The modularity of the system has been improved,
making incremental additions and refinements
easier.

0 The display system has been mrodified to function
properly on a Tektronix 4025.

o New rules have been added to perform more general
track identification.

1.3 Significance of STAZ4MER2 to Artificial Intelligence

1.3.1 Toy problems versus real problems
Workers in artificial intelligence (AV) argue over the

benefits of studying researcher-defined toy problems as
opposed to studying naturally occurring real-world problems.
A toy problem allows the researcher to abstract an important
problem and to concentrate his efforts on a general
solution. He may shift his attention and viewpoint. He is

- not disturbed by the exigencies of producing a working
system. Toy problems, however, allow the researcher to
trivialize the problem, to choose a problem of little
importance, and, because of the small size, to allow
solutions which are in general impractical and consequently
no solutions at all. Real-world problems that require novel
AI approaches force the researcher to produce new

* ideas/techniques or to fail. He may not change the problem.
The problem size limits the possible solutions. Computers
have finite memory and operate at finite speeds. People also
seem to have a finite memory and to think at a finite speed.
This resource limitation is a fundamental constraint on the
nature of solutions to problems in AI. This constraint
cannot be sidestepped in solving real-world problems.
Real-world problems have the disadvantages that they may be
too specialized, that the pressure of producing a running
system will absorb too much of the researcher's time, that
the problem attacked is inappropriate, and that the solution
is too ad hoc. In the end, the value to artificial
intelligence of work on either a toy problem or a real-world
problem will be determined by the quality of the work. Both

V 4

domains allow useless and useful results.

STAMMER2 deals with information on a real-time basis. This
process is further complicated by the fact that the
information is suspect, and its arrival may not be in
chronological order. STAMMER2 makes whatever conclusions it
can on the basis of its current knowledge. Other real-time
AI systems, such as HARPY3 or HEARSAY4 , are provided with
complete information. STAMMER2 uses partial knowledge and
later, if other relevant information comes in, must revise
its conclusions. The combination of these problems leads to
a number of issues in AI.

1.3.2 Particular AI issues

o Real-time explanation
The explanation system is written as a
miniproduction system (see 2.6 The Explanation
System). Unlike MYCIN, STAMMER2 faces the problem
of generating explanations for assertions it no
longer has confidence in. A method for saving the
derivation of an assertion is incorporated into
STAMMER2 (see 2.4 Confidence).

o Semantics of Logical Connectives
The semantics of the connectives "and, or, not" are
given by the manner in which they affect the
computation of the confidence. MYCIN and PROSPECTOR

5

gave different semantics to these operators, but
there is no agreement on which method is better.
STAMMER2 follows the MYCIN approach to confidence

3
The HARPY Speech Understanding System, by BT Lowerre and

R Reddy; Trends in Speech Recognition, WA Lea, ed,
Prentice-Hall, 1979.

4
The HEARSAY Speech Understanding System: An Example of

the Recognition Process, by DR Reddy, LE Erman, RD Fennell,
and RB Neely; Proceedings of the Third International Joint
Conference on Artificial Intelligence, Stanford CA, 1973, p
185-193.
5
Technical Report 136, Semantic Network Representations in

*° Rule-Based Inference Systems, by RO Duda, PE Hart, NJ
Nilsson, and GL Sutherland, SRI International, 1977.

5AI L ____

11 -

computation but extends the set of connectives to
include "unless" (see 2.4 Confidence).

o Dynamic Confidence
People permit the confidence of an assertion such
as "I should move to London" to vary in time.STAMMER2 must do the same. Consequently STAMMER2
does not store a confidence with an assertion as in

MYCIN; rather, it computes the confidence on
demand.

o Reasoning Cycles
Formal mathematical arguments eschew circular
reasoning, but circular derivations arise naturally
in reasoning with judgemental knowledge (see 2.4
Confidence). In STAMMER2, a solution to the
problem of assigning a confidence to an assertion
which has cycles in its reasoning chain is
implemented.

o Efficiency of Production Systems
The efficiency of production system formalisms is a
well-acknowledged problem, and several researchers
have proposed techniques to ameliorate the problem.
By organizing the data into streams, STAMMER2
avoids all recomputations of rule-firing
conditions. By means of a combinatorial hashing
scheme, STAMMER2 can examine its data base in a
time proportional to the number of retrieved items.

With the exception of tfie problem of efficiency, AI has
paid little attention to the above issues. The construction
of STAMMER2 has led to their discovery and provided some
reasonable preliminary solutions.

6I!
A

CHAPTER 2
DESIGN AND IMPLEMENTATION ISSUES

2.1 Introduction

While the redesign of STAMMER involves many decisions on
many levels, some of the most important issues concern the
dynamic data base and rule interpretation. A rule-based
language has a number of advantages, but with very large
rule sets and large collections of data, these advantages
may be overwhelmed by computational inefficiency and
difficulty of use. These problems motivated most of our
redesign effort.

In the existing STAMMER system, the dynamic data base was
a source of both awkward usage and computational
inefficiency. while the assertion format could be used to
create fairly general structures, the restriction to
two-place relations forced occasional circumlocutions on
users, causing the creation of tangled groups of assertions
to represent conceptually simple relationships. In the
redesign, we retained the assertion concept while
generalizing it to permit an arbitrary number of arguments
for the relations involved. Thus in addition to the
existing binary relations, users may define unary, ternary,
and n-ary assertion forms.

The efficiency problem involved greater effort. Retrieval
of assertions is a pattern-matching process, which requires
search. The match was determined on the basis of the
content of the assertion. What happens is essentially a
simulation of an associative or content-addressable memory.
To improve efficiency, we wished to improve this simulation.
The goal of the improvement was a retrieval time roughly
proportional to the number of assertions retrieved. This
can be achieved by a sophisticated data structure
representation. Our preferred idea is related to that of

* combinatorial hashing r discussed in Knuth6.
Another efficiency improvement incorporated in the dynamic

data base retrieval mechanism is designed to save space

6
The Art of Computer Programming, Vol 3: Sorting and

Searching, by D Knuth, Addison-Wesley, 1975.

7

rather than time (although it should have minimal time
overhead). This change replaces the traditional returned
list of results with a mapping of some function over the
assertions which match the retrieval specification. Instead

* of creating a new list of retrieval results to be used by a
function, the function is applied directly to assertions as
they are retrieved. This is roughly like applying a
function to members of a list as they are generated rather
than passing a copy of the list as an argument to a
function. The implementation details of these efficiency
improvements are invisible to the user.

The other area which promised great gains in clarity and
efficiency was the rule evaluation mechanism. For clarity,
we expanded the expressive power of rules, allowing
arbitrary Boolean combination of conditions along with an
improved treatment of negation. Wie also provided a
mechanism to permit what we are calling "semantic loops,"
caused by rules which might create cycles in deduction paths
(eg If *x is a sibling of *y, then *y is a sibling of *x),
but are nevertheless useful. These refinements, along with
others, required some changes in the handling of confidence
factors as well.

Our approach to improved efficiency may be described as
"incremental deduction." It is similar to the change-driven
approach which is used in a limited way in STAMMER and
mentioned in the RAND rule-based language effort (called
ROSIE, for rule-oriented system for implementing expertise).
Incremental deduction also deals with the problem of rule
selection. The central idea in incremental deduction is
that a rule evaluates its conditions either until it
succeeds or until a condition fails. When a condition
fails, a "suspension" is created which corresponds to the
remainder of the rule. As more information is added to the
data base, those 3uspensions which can use the new data are
revived and continue as before (either completing or
suspending again). A suspension contains not only the
remaining part of a rule, but also the bindings established
by already satisfied conditions, if any. Since the
evaluation of a single condition is much the same as in the
present system, all possibilities are considered when the
rules are first fired. Even when a condition succeeds,
there may be other ways for it to be satisfied, so a
suspension is left behind.

An obvious way of implementing suspensions is through
coroutines. However, the shallow binding scheme of
INTERLISP makes context switching expensive in the
system-supported coroutining regime. For this reason, we've

8

provided our own coroutining/context switching mechanism.

These are the issues that we have addressed during this
redesign at the theoretical mechanism level. At a somewhat
different level, we have implemented a method of using
graphics to explain specific rule firings.

2.2 Memory

One of the major revisions that distinguish STAMMER2 is
a change in the way that assertions were represented,
stored, and accessed. The goals of the change were

o to provide greater flexibility in the form of
assertions by permitting n-tuples rather than just
triples and by permitting nonatomic elements in
assertions

o to increase the speed of data-base retrievals,
while having a minimal effect on required storage

o to better support the revised rule interpretation
mechanism.

In order to describe the new memory and its changes, we'll
first review the structure of the old memory.

2.2.1 Original design and implementation
The original STAMMER had a memory made up of assertions

which were triples of the form (Relation argument argument)
(usually written in infix, eg aRb). Each assertion was
represented in memory by a unique identifier, called the
assertion node, where the elements of the assertion were
stored along with confidence information. The assertion
node and assertion items were associated, with forward
associations linking assertion nodes to elements and back
associations linking elements to assertion nodes. Every
assertion node pointed to the elements of its relation, and
every element (relation or argument) pointed to all the
assertions in which they participated. The approximate cost
in storage was acceptable, but the scheme required an
unreasonable amount of time and intermediate storage to
perform retrievals.

Retrievals were performed by chasing pointers and doing
* intersections. A primary requirement was the ability to

retrieve an assertion or list of assertions given a list of

9

elements. The assertions retrieved were to be those in which
those elements participated -- in short, a total match on a
partial specification. While the actual algorithm was
somewhat more refined, the basic procedure involved looking
at those elements (keys, in data-base terms) which were
known to be in the desired assertions, finding the
assertions in which those elements participated, then (if
there was more than one known element) intersecting the
resulting lists of assertions. Intersection is
computationally quite expensive, requiring O(n2) time for
calculation. Thus, while this representation was not
excessive in space, the time cost of retrieval was bad
enough to force reconsideration.
In addition, maintaining the pointer structures on the

property lists of assertion elements forced all assertion
elements to be of a particular INTERLISP data type
(litatoms), since no other data type has property lists.
Since litatoms specifically exclude numbers, this created
particular problems in the representation of numbers,
forcing an encoding and decoding sequence which required
still more time. However, the cost of intersection in
retrieval was the motivating factor in the memory redesign.

2.2.2 Desired features
Like many data-base retrieval problems, the difficulty in

finding a fast, relatively small representation and
retrieval method for memory grew out of the architecture of
standard computers. In a standard computer (Von Neumann
architecture), memory is referenced by location, while for
data-base retrieval, one wishes to recover elements based on
their content, rather than incidentals such as where the
information is stored. Ideally, the memory ompon ent would
be handled on a content-addressable machine' * However, such
machines are still rare and in present implementations may
still be unsuitable. Instead, it is necessary to simulate
content addressability on a location-addressed machine. The
property list/pointer representation of the original STAMMER
provided one way of doing this at the cost of intersections.
A more direct method would be to provide a function which
maps content into location. If the address (location) space
is smaller than the content space, this mapping is called

7
Content Addressable Parallel Processors, by CC Foster,

Van Nostrand Reinhold, 1976.

hashing; this forms the basis for memory organization in

STAI4MER2.

2.2.3 New design
As before, memory is made up of assertions, each with a

unique assertion node identifier. Assertions are statements
that some relation holds over some set of arguments. An
assertion's inclusion in memory, however, is not in itself a
commitment to the truth or falsity of the statement but
rather is simply a representation of the statement. (Truth
and falsity, or belief and disbelief, are handled
separately. See 2.4 Confidence.) The assertion node is
associated with the assertion (and assertion elements) and
an access function is provided which returns an assertion
when given an assertion node. (At present, the standard
LISP binding mechanism provides the association and the
access function is a simple EVAL, but any suitable
association/access function combination could be used.) With
such an access function available, links to an assertion may
be made instead to the appropriate assertion node, at the
cost of one node-assertion access. This is the standard way
of doing things, so that when reference is made to
assertions, as in "associated with an assertion," it is in
fact the assertion node that is used in the association.

The major difference is in the way assertion elements are
associated with assertion nodes in which they participate.
Instead of establishing an association from each element to
the assertions in which it participates, associations are
created between combinations of elements and the assertions
in which those combinations appear. Thus for a typical
assertion (R a b), the old method would have established
three "back associations":

1. R (> R a b)

2. a ->(R a b)

3. b ->(R a b)

By suitable intersection of such associations, all
assertions containing (R * b), where * represents a
variable, could be retrieved. For the same assertion, the
new method would establish eight back associations:

lo (R a b) -> R a b)

2. (*a b) (> R a b)

lo11

3. (R *b) ->(R a b)

4.(b) ->(R a b)

5. (R a *->(R a b)

6. (*a ()- R a b)

7. CR *)-> (R a b)

8. ((**)- R a b)

This is certainly more space, but notice that now the
retrieval of all assertions (R * b) is a one-step, constant
time cost operation. Further, to massage the associated
assertions to recover all bindings for the "missing"
argument costs 0(n), just as under the old scheme. However,
the combined costs 3of the two retrievals required to bind
variables are O(n) under the old system and 0(n) under the
new. For an increased cost in memory of approximately (2k)-~k
(where k is the average number of elements in an assertion),
there has been a significant gain in speed. For short
assertions, the time gain can readily justify the storage
expense.
2.2.4 Implementing the new design

The first step in implementation was to find an
appropriate method for representing the back associations.
The possible combinations of elemoents are referred to as
retrieval specifications and are represented as lists. Since
they are not atoms, the "standard" LISP association
technique of property list pointers could not be used
without some sort of coding and decoding. INTERLISP
provides another method of establishing "content
addressable" 8association much like property lists, called
hash arrays8 . However, the system implementation of hash
arr~iys also assumes atoms as retrieval keys by using EQ for
collision tests. This was also not acceptable. However,

* unlike property lists, it was possible to write a version of
the hash array facility which did not assume atoms as keys.
This was done, providing creation, insertion, and retrieval
functions that closely match those of the system facility

8
INTERLISP Reference Manual, by W Teitelman, Xerox Palo

* Alto Research Center, 1978.

12

but which rely on EQUAL, rather than EQ. Some additional
functions were also written to perform commonly desired
combinations of primitive hash array functions. In use as a
method of storing back associations, the hash array works as
follows:

Given a retrieval specification, an array address is
generated. If the contents of the key field of the
array at that address match the retrieval
specification, the data field is returned. Otherwise
a new address is generated, and the equality test
(match) and remaining steps are repeated.

The most difficult part of the hash array implementation
was devising a good hashing algorithm (address generator).

With the basic mechanism implemented, a number of
decisions were made that reduced the total space required by
this representation regime. A study of the particular
application of memory revealed that the most general
mechanism, which stores 2 back associations, would store
data under retrieval paths that would never be used. By
preventing storage under these paths, the space cost could
be reduced in this particular application. It is important
to note that these reductions are very application
dependent, and are not valid in general.

In this application, it was not necessary to store any
retrieval specifications in which the relation element was
variable (specifications of the form (* anything anything

..).This reduced the number of back associations from YK
to 2k-i. Thus, for the canonical three-place assertion, the
following retrieval specifications were used as keys:

1. (R a b)

2. (R * b)

3. (R a *

4. CR*

This is a significant gain, especially since most
assertions are three-place. Under this filter, storage cost
for the time gain is very favorable.

13

ALO

2.3 Rules and the Rule Interpreter

2.3.1 Rule formats
A large increase in flexibility has been provided in

STAMMER2 by increasing the expressive power of the rules.
This increased power has necessitated a change in the format
of the rules. While rules still have conditions, actions,
and confidences, the forms of the conditions and actions are
different. Previously, conditions and actions contained
explicit retrieval and construction function calls. These
were necessary to insure correct variable bindings. Since
the rule variable binding scheme has been changed to allow
binding of multiple variables in a single condition, uniform
retrieval and construction functions are now used, obviating
the necessity for explicit function calls.

The new condition and action format has a further
advantage. Under the new representation, conditions and
actions have the same format as standard assertions, making
the rules more clearly readable, and making it possible to
utilize the assertion prettyprinting functions to describe
the rules.

The best way to describe the changes in rule formats is
simply to show a rule in the old format and the new. A
fairly simple rule, in the old form, looked like the
following:

(GETOP M MERCHANTLANE)
(GETS X (RETRIEVE2 (QUOTE %)(QUOTE PLATFORM)))
(UNLESS (RETRIEVE3 (QUOTE AIR) (QUOTE MEDIUM) x))
(GETS Y (RETRIEVE2 (QUOTE SIGHTING) X))
(RETRIEVE3 Y (QUOTE IN-LANE) M)

(CASSERT Y (QUOTE INSIDE-A-MERCHANTLANE)
(QUOTE DUMMY))

This rule shows several of the problems with the old
forms. Not only is it hard to read, but the special items %
and DUMMY were required by the triple nature of all
assertions. Contrast this with the same rule in the new
format:

14

(MERCHANTLANE *MLANE)
(PLATFORM *SHIP)
(*UNLESS* (MEDIUM *SHIP AIR))
(SIGHTING *SHIP *SIGHTINGl)
(IN-LANE *MLANE *SIGHTING1)

(INSIDE-A-MERCHANTLANE *SIGHTING1)

With the exception of connectives (*UNLESS*, *NOT*, and
OR), all of the conditions and actions look exactly like

assertions. Where connectives do appear, the assertionlike
forms are merely embedded, rather than obscured.

Any element that starts with "*" is a variable. Variables
are bound on first encounter, and that binding is used in
later conditions and the actions. This rule does not
demonstrate an additional enhancement, which permits
multiple actions, or conclusions, of a single rule.

As mentioned earlier, the assertion prettyprinter is used
to generate rule descriptions so that even this improved
rule format is not seen by the user. However, for system
builders, it is necessary to use this format when
constructing new rules.

2.3.2 Connectives
The new rule interpreter and rule formats permit a broader

range of connectives than found in STAMMER. Here we'll give
a description of each connective, along with some
information about its use.

2.3.2.1 AND
AND is the implicit connective. Whenever conditions or

actions have no explicit connective, AND is assumed. AND
conditions succeed if they are retrieved with positive
confidence. ANDed conclusions are all constructed.

2.3.2.2 *UNLESS*
UNLESS is the other holdover from STAMMER. *UNLESS*

conditions succeed if there is no retrieval with positive
confidence. Due to the unusual (and not fully understood)
semantics of this connective, we have placed a restriction
of one retrieval per *UNLESS* on the system.

15

2.3.2.3 *NOTP*
NOT is an addition in STAMMER2. It behaves as one might

expect, succeeding for all retrievals with negative
confidence. *NOT* (and *UNLESS*) are not permitted in
actions.

2.3.2.4 *OR*
OR is another addition. It has the effect of creating

multiple rules, one for each argument. For each argument, if
the argument succeeds (in the same sense as an AND
argument), the remaining conditions of the rule are used. In
actions, all the arguments to *OR* are constructed, but with
different confidences than would be the case with an AND.

2.3.3 Streams and the redundant inference problem

2.3.3.1 Introduction
A major innovation in STAMMER2 is the central position

that streams occupy in the interpreter. This is motivated
by the continuing effort to improve the efficiency of
rule-based systems, while maintaining their flexibility.
Success in this enterprise is vital for satisfactory
application to practical situations.

In addition to being useful from a practical standpoint,
the application of streams has theoretical significance. A
distinguishing feature of the STAMMER environment is the
ongoing nature of data entry: messages are received in a
continuous unsolicited fashion. Later messages may supersede

or even negate earlier ones. This is in sharp contrast to
other rule-based systems wherein all the information they
will use is there from the beginning (or is obtained in
response to a query). The spontaneous nature of the
environment suggests a data-driven system. Streams were
invented, in part, to meet the requirements of data-driven
languages. Thus it is no surprise that the introduction of
streams has led to a conceptual siriplification of the
STA1MMER control mechanism.

2.3.3.2 Redundant inference
* To see how streams improve efficiency, we first consider a

simple model for the rule interpreter. In this model the
system maintains a list of rules. The rule conditions
pertain to a central data base which is constantly being
updated. At regular intervals the system attempts to fire
each rule; that is, it checks to see if the rule conditions

SO16

are currently satisfied in the data base. We may suppose
that the system can retrieve a list of current items in the
data base matching a given condition. The rule interpreter
can then be described by the following pseudo-ALGOL program:

PROCEDURE interp(condition-list actions)
if condition-list is empty do actions else
for each x in list of matches of first
condition do
interp(m(x, remaining conditions), actions);

Here m is a function that modifies the remaining
conditions on the basis of. bindings determined by
x. (Actually, a more efficient scheme for transmitting
bindings would be used in a real interpreter.)

If one of many conditions is not satisfied, a rule may
fail to fire. In this case, any partial work done in
satisfying the rule is lost. The simple model also dictates
that a rule is tried without regard to the nature of
intervening changes to the data base. If such changes are
irrelevant to a particular rule's conditions, attempting the
rule leads to exactly the same work and the same result as
the previous trial.

We might incorporate special mechanisms to deal with such
extreme cases of wasted effort. The following example shows
a more subtle instance, indicating that redundant
computation pervades the simple model. Consider the rule (in
coded form):

(sighting *x *y) (storm *z) (inside *x *z) -> (not (merchantii, *yThis may be paraphrased as "sighting a ship in a storm
suggests that it is not a merchant." Let us suppose that for

a fixed ship we have m sightings and n storms. To try to
we subsequently receive a new sighting, the rule is again
applicable, and we now do (m+l)*n computations of INSIDE.
However, only n of the combinations are new; the rest are
redone and represent wasted effort. Clearly, only the new
sighting should be used in combination with each of the
recorded storms. Conversely, if a report of a new storm is
received, only that storm should be tested in conjunction

j.. ~with the previous sightings. The problem, then, is to find
v 1 a mechanism that will achieve this. In STAMMER a context

restriction mechanism realized this economy in the example
mentioned. However, it is still possible to construct

17

examples wherein wasted effort occurs. Seeking a general
solution to this problem led us to the use of streams.

It is important to recognize that the possibility of
redundant computation arises only because the same rule can
be tried more than once. In a situation wherein all the
information the rules will need is present from the
beginning, such repeated application is unnecessary and this
kind of inefficiency will not occur. This point is the key
to our solution.

2.3.3.3 Streams
Streams have been introduced in the development of

advanced programming languages. Such experimental languages
are radically Oifferent from the conventional languages in
use today. LUCID7 , a nonprocedural language, is motivated
by mathematical considerations--the desire for clean
semantics and the facilitation of correctness proofs.
Dataflow languages10 have been constructed to take advantage
of the coming prospect of multiprocessor machines. Both make
use of streams in an explicit way.
A stream may be defined as a distinguished sequence of

values, existing over time in a computation. If we execute a
program in a conventional language, then the history of
successive values of a variable forms a stream. Thus, in
contrast to static data structures such as lists and arrays
(where all the component elements must exist at one time),
streams are DYNAMIC data structures. Although streams exist
in all computations, they are not recognized as addressable
objects by conventional languages and so cannot be
manipulated to advantage. By identifying certain streams and
providing stream operators, it is possible to achieve a
natural form of parallelism in an otherwise sequential
language. This allows simpler programming of what are,
conceptually, interacting processes.

9
LUCID, A Nonprocedural Language with Iteration, by EA

Ashcroft and WW Wadge; CACM, vol 20, 1977, p 519.
10

Technical Report 114A, An Asynchronous Programming
Language and Computing Machine, by Arvind, KP Gostelow, and
W Plouffe, Information and Computer Science Department,
University of California, Irvine, 1978.

18

'.4

We have implemented streams in INTERLISP by providing
three operators:

o NEWSTREAM is a LISP function of no arguments that
creates a stream. It returns a structure that
serves as a means of addressing the stream. Thus
rather than allowing access to existing implicit
streams (which would require a way of intercepting
the LISP interpreter), we provide for the
construction of explicit streams which can then be
used as desired. Rieger, in his use of "channels"
(which have much in common with streams) takes the
opposite approach1 1 .

o MAPSTREAM (stream info fn) is a LISP function that
sets up demons on streams. It is analogous to MAPC,
except that it operates on streams instead of
lists. When called, it immediately maps fn across
whatever has been put in the stream so far. In
addition, it sets up a "suspension" which is
revived whenever anything new is put into the
stream, causing fn to be called on the new stream
element. Actually, fn must be a function of two
arguments. The second argument is bound to info at

*each call, allowing a local environment to be saved
and used with the stream.

o PUTSTREAM (stream elt) is a LISP function used to
put elements into a stream. It causes any
suspensions attached to the stream to go into
action with the new element immediately (unless a
FREEZE is in effect--see below).

These are the primary operators for use on streams. For
added control, we provide some additional functions.
ENDSTREAM (stream) may be used to indicate that a stream can
expect no more elements. This allows the suspensions
associated with the stream to be thrown away, releasing
space to the system. FREEZE is used to prevent (temporarily)
suspensions from awakening while a number of additions are
made to different streams in the system. UNFREEZE reverses
this condition and activates a "catch up" procedure.

11
.4 Spontaneous Computation and its Role in AI Modeling, by

C Rieger; Pattern-Directed Inference Systems, DA Waterman
and F Hayes-Roth, ed, Academic Press, 1978.

19

2.3.3.4 Streams and the rule interpreter
btreams are incorporated into the rule interpreter

mechanism by representing the set of assertions that match a
given rule condition as a stream. A simplified definition of
the interpreter is given as follows:

PROCEDURE interp(condition-list actions)
if condition-list is empty do actions else

for each x in stream matching first condition do
interp(m(x, remaining conditions), actions);

The "for each" is implemented by a MAPSTREAM. Here INTERP
is directly called once on each rule. This sets up the
condition-matchers as demons which cause INTERP to be
reactivated whenever a relevant item is placed in the data
base. The effect is as though the item had been present when
INTERP was originally called.

Comparing this interpreter to the earlier one, we see that
the only difference is the replacement of a list by a
stream. The significance of this is that a single
application of INTERP to each rule is sufficient. The
situation is formally identical to the one wherein all the

*information is present from the beginning; thus redundant
computation of the type described will not occur.

The use of the stream mechanism has some additional
implications for the interpreter. Suspensions are saved at
the level of each condition of a rule. A new item of
information may arouse a suspension and cause the
interpreter to move through a few rule conditions before
halting again. The effect is to create new suspensions
farther down the rule. This exercise has done some of the
work towards a potential future firing of the rule. Thus the
stream regime causes deduction to proceed in an INCREMENTAL
fashion, with as much use as possible made of new
information, even if it doesn't result in a full firing of a
rule. This is highly appropriate in the present task, where
the system may have a considerable amount of idle time
between significant occurrences. (It would also be useful in
a chess-playing program, allowing information to be saved
between moves.) A second implication is that rule selection
in the conventional sense disappears, since each rule is
activated exactly once. However, a suspension selection

41 problem arises in its place. Fortunately, it is not
difficult to determine exactly the suspensions which are
relevant to a new data-base entry and to activate them
through a suitable hashing scheme.

2

' 20

2.3.3.5 Pulsars
Since STAMMER deals with probabilistic rather than

absolute deductions, an additional problem can arise. For
purposes of economy, a potential deduction is prevented if
the confidence in a particular condition falls below a
threshold value , even though a matching item is in the data
base. If the confidence should subsequently change, it may
be necessary to revive the deduction at that point.
Conceptually, each assertion in the stream of assertions
has, in turn, a stream of confidences associated with it.
For certain reasons, havina to do with the way derivation
trees are constructed, we do not want to use the full stream
mechanism here. Instead a new streamlike entity called a
"pulsar" is attached to each assertion node. Rather than
having distinct elements placed on it, a pulsar is merely
"pulsed." The effect of this is to revive suspensions saved
on the pulsar. These may succeed or fail. If they succeed,
they are removed from the pulsar. We use this mechanism as
follows. If an assertion matches a rule condition but the
deduction is blocked by a low confidence in the assertion,
we save the state of the deduction in the pulsar associated
with the assertion. If the confidence changes, the pulsar is
pulsed and the deduction tries to proceed once more. When
and if it succeeds, the suspension is discharged from the
pulsar.

The following functions are provided to manipulate
pulsars:

o PULSAR creates a new pulsar.

o SOMEPULSE (pulsar info pulsefn) saves a new
suspension on the pulsar. pulsefn is a function of
one argument which is bound to info when a pulse
occurs. If it returns a non-nil value, it is
discharged from the pulsar.

o PULSE (pulsar) obvious.

2.4 Confidence

The increased flexibility in rule formats and
* interpretation has made it necessary to increase the power

of the confidence calculating functions as well. Negative
and unless conditions are now included in the calculation of
confidence, where they were ignored before. More
importantly, w hvede devised a method for dealing with
cycles in the derivation process, which we are calling

21

semantic loops."

In STAMMER, confidence was calculated dynamically on
* request rather than being calculated and stored at the time

of a derivation. This approach had the advantage of allowing
the confidence to be updated automatically by later

* derivations without the need for recalculation unless it was
specifically requested. The information required to enable
the dynamic recalculation did not require additional
storage, since it was needed for explanation.

The dynamic calculation of confidence was retained in
STAMMER2, since the benefits of flexibility far outweigh the
disadvantages of extra computation time. However, the
structure of explanation and confidence information was
changed slightly, to save space and increase the versatility
of the system. Since back associations are handled
differently in STAMMER2 and since no use was made of them in
explanation, it was possible to reduce the complexity of the
derivation tree by eliminating back pointers. It is now
possible to go from any assertion to those rules and
assertions which offer evidence for it, but it is not
possible to find (directly) those assertions for which a
particular rule or assertion is evidence. This
simplification is matched by a slight complication: instead
of being lumped together and ignored under NEGEV, assertions
satisfying NOT and UNLESS conditions are stored in the tree
with special markers which direct the computation mechanism.

These markers cause special operations to be performed.
First the confidence of the affected assertion is
calculated, then the special operations map that confidence
into an appropriate changed confidence. Thus (NOT A0042) has
confidence 0.7 when A0042 has confidence -0.7. The NOT
operation is simple inversion. UNLESS is more complex,Fmapping the interval from -1.0 to 0.0 inclusive onto the
single value 1.0 and mapping the interval from 1.0 to 0.0
onto 0.0 to -1.0 by the function x -> -x.

Including NOT and UNLESS in the calculation of confidence
forces consideration of "semantic loops." What has until
now been considered a derivation tree may in fact be a

F. - graph, complete with cycles. We wish neither to ignore such
cycles completely nor to get caught in them forever. The
solution is a marking algorithm that marks elements of the
tree (graph), and considers contributions only from
previously unmarked elements. Thus, each element of the
graph contributes at most once in any branch. After
confidence calculation, the marks are removed. The marks are
also removed in case of an error exit, to avoid any possible

22

complication. This algorithm permits the use of rules that
might ordinarily be considered "circular," such as (Sibling

2.5 Oracles

Oracles are distinguished relations which do not rely
solely on the data base and standard retrieval. They provide
an escape to LISP code for certain relations that are either
difficult or tedious to represent as rules and for relations
that should only be calculated on demand. Since oracles are
a way of incorporating LISP function calls, they lose the
advantage of derived assertions in explanation.

In the original STAMMER, oracles examined their arguments
and returned T or NIL, depending on whether or not the given
relation held among the arguments. The oracle call was then
treated as an assertion and added to memory, with a
confidence based on the value returned.

All of this still happens in STAMMER2. However, other
things happen as well. Due to changes in the rule
interpreter, the arguments to relations are no longer
evaluated. Thus it is no longer possible to use calls to
LISP functions (other than oracles) to generate arguments to
relations in conditions. Typical uses of this ability
previously were calculation of course and speed. With the
evaluation gone, some other way of generating the arguments

was required.
An enhancement in STAMMER2 permits certain distinguished

oracles to return answers other than T or NIL and thus to
bind arguments to relations. If all the arguments to one of
these distinguished oracles are bound when the oracle is
called, the effect is the same as a normal oracle.

These distinguished oracles (called lastarg oracles) are
LISP functions just as are standard oracles. Hovever, the
functions that implement them take one fewer arguments than
would appear from the call, then calculate and return an
answer which is the correct (confidence 1.0) binding for the
last argument in the call. If the last argument was unbound
at the time of the call, the function call with the returned
value replacing -the unbound argument is asserted in memory
with absolute positive confidence. If the last argument was
bound at the time of call, the function call is asserted

j with confidence 1.0 if the value returned is equal to theK' : binding, and -1.0 if they differ.

I23

Oracles are distinguished by a marker on their property
lists. Lastarg oracles are marked both as oracles and as
lastarg type.

2.6 The Explanation System

2.6.1 A production-driven user interaction facility
QH is a subsystem to assist in programming a comfortable

interaction with a user. The services provided the user are
modelled after those of ASKUSER, with its shortcomings
corrected and a few improvements made. To the programmer,
QH offers a clean and convenient way of specifying the
interaction: by means of productions. These productions
also direct the processing of the user input.

In the past there have been several other methods for
implementing question-and-answer subsystems. For completely
arbitrary input one would need some technique from natural
language processing, such as the ATN as used by Woods in the
LUNAR programl 2 ,1 , but this is computationally expensive
and often leads to questions which the system is unable to
decipher. The standard way of implementing user interaction
is to give him a fixed menu of responses. This is
computationally efficient, but wvry rigid. The production
system approach guides the user into forming questions which
the system can understand. The options that the user has can
be dynamically computed. This gives the user flexibility
while at the same time providing the programmer with some
capability for context-sensitive parsing.

12
Transition Network Grammars for Natural Language

Analysis, by WA Woods; CACM, vol 13, 1970, p 591-606.
13

BBN Report 2378, The LUNAR Sciences Natural Language
Information System: Final Report, by WA Woods, RM Kaplan,
and BL Nash-Webber; Bolt, Beranek and Newman, Inc, 1972.

24

t

2.7 Position Functions

The functions in the file PLATPOS determine the position
of a sighting at an arbitrary time. If the position of two
sightings of the same platform is known with certainty, the
position at other times is determined by a simple
extrapolation or interpolation. More likely, at least one of
the positions is given only as a polygon. How may one
interpolate or extrapolate polygons?

If pl and p2 are two polygons known at times tl and t2
respectively, then one way to interpolate them would be to
union the interpolations formed by taking one point from pl
and one point from p2 for all such points. In the case that
pl and p2 are degenerate polygons, ie points, this yields
the correct result. In the general case, this computation
is very expensive. In PLATPOS a computationally efficient
method is used which gives an approximation to the technique
just described. In the method adopted, if pl and p2 are the
two polygons, a "span" is constructed. If the length of pl
is greater than or equal to p2, then for each vertex of pl,
find the nearest vertex in p2. This set of pairs of vertices
is called the span. Each pair of vertices defines a line
segment on which a standard interpolation can be performed.
The collection of such interpolated points defines a
polygon, which is, by fiat, the polygon that PLATPOS creates
from pl and p2.

2.8 The Message Monitor and the LWES Connection

One of the greatest inconveniences of the original STAMMER
was the difficulty in creating scenarios. Since scenarios
were represented by messages containing location and
(occassionally) identification information, these messages
had to be created to establish a new scenario.
Unfortunately, there were no facilities to aid in the
creation of these reports, which made scenario generation an
extremely time-consuming cut-and-try hand operation, with
the further problem that there was no assurance that the
resulting scenarios were reasonable.

Since the completion of STAMMER, a LISP version of the
Warfare Environment Simulator (LWES), written by Frank
Zydbel, has become available. LWES permits the user to give
commands to various platforms, causing them to move about,
sense each other, and attack. Since LWES simulates sensor
operation to provide reports to the user, it was easily
modifiable to produce a file of sensor reports for STAMMER2.

25

.4J

In addition to the radar reports dealt with in STAMMER, LWES
generates sonar and EW reports, and this is an added
advantage. The format of the sensor report file written by
LWES is detailed in appendix III.

To utilize the sensor report file written by LWES, a new
message monitor (receipt function) was written. This new
monitor Nknows" about the format of sensor report file
entries. It reads the reports and places appropriate
assertions in memory. The message monitor can also deal with
reports of own-ship location change and weather reports (in
the restricted sense of storm warnings).

'I

tt

CHAPTER 3
USER'S HANDBOOK

3.1 Sample Run

-(STAMMER)
Welcome to version 2 of the STAMMER TSA system.

What file would you like to take messages from?
(Default is SCENE.ICE): TEST2.DAT

Are you running on a TektronixNo
Do you have a Tektronix available for display? No

RADAR contact at (63.67 -24.17) Time: 115
Associated with track CONTACT2

Report: CONTACT2 was sighted in the merchant lane LANE2
A0223: CONTACT2 is somewhat unlikely to be (-.19) a MERCHANT
Question? WHY is A0223
STAMMER applied the rule(s)
CLOSE-POPUP
Question? HOW does rule CLOSE-POPUP apply to A0223
The rule was applied with the assertions

A0215: CONTACT2 is a contact

A0214: SIGHTING3 is definitely (.99) the first sighting of
CONTACT2

A0220: 11.73514 is the range of SIGHTING3

A0222: 11.73514 is less than 12

Question? Quit
Leaving EXPLAIN

RADAR contact at (63.74 -24.25) Time: 125
Associated with track CONTACT2

Report: CONTACT2 was sighted in the merchant lane LANE2
A0223: CONTACT2 is somewhat unlikely to be (-.39) a MERCHANT
Question? WHY is A0223
STAMMER applied the rule(s)
FASTER-THAN-A-MERCHANT CLOSE-POPUP
Question? HOW does rule FASTER-THAN-A-MERCHANT apply to

A0223

27

The rule was applied with the assertions

A0215: CONTACT2 is a contact

A0239: SIGHTING4 is a sighting of CONTACT2

A0244: SIGHTING4 is other than a first sighting of its
platform.

A0247: 28.26315 is the speed of SIGHTING4

A0257: 28.26315 is greater than 25

Question? Quit
Leaving EXPLAIN

RADAR contact at (63.78 -24.29) Time: 130
Associated with track CONTACT2

A0223: CONTACT2 is probably not (-.68) a MERCHANT
Question? Quit
Leaving EXPLAIN

RADAR contact at (63.81 -24.32) Time: 135
Associated with track CONTACT2

A0223: CONTACT2 is very probably not (-.79) a MERCHANT
Question? Quit
Leaving EXPLAIN

RADAR contact at (63.95 -24.47) Time: 155
Associated with track CONTACT2

A0223: CONTACT2 is almost certainly not (-.89) a MERCHANT
Question? Quit
Leaving EXPLAIN

RADAR contact at (63.99 -24.46) Time: 160
Associated with track CONTACT2

A0223: CONTACT2 is almost certainly not (-.95) a MERCHANT
Question? WHY is A0223
STAMMER applied the rule(s)
SPEED-CHANGED FASTER-THAN-A-MERCHANT OUTSIDE-ALL-LANES
FASTER-THAN-A-MERCHANT SPEED-CHANGED OUTSIDE-ALL-LANES
FASTER-THAN-A-MERCHANT SPEED-CHANGED OUTSIDE-ALL-LANES
FASTER-THAN-A-MERCHANT OUTSIDE-ALL-LANES
FASTER-THAN-A-MERCHANT FASTER-THAN-A-MERCHANTI CLOSE-POPUP
Question? HOW does rule SPEED-CHANGED apply to A0223

28

Which occurrence? 2
The rule was applied with the assertions

A0215: CONTACT2 is a contact

A0300: SIGHTING6 is a sighting of CONTACT2

A0309: SIGHTING6 is other than a first sighting of its
platform.

A0315: SIGHTING6 is other than a last sighting of its
platform.

A0373: SIGHTING7 is the successor (in time) of SIGHTING6

A0313: 24.15066 is the speed of SIGHTING6

A0354: 27.86787 is the speed of SIGHTING7

A0375: 27.86787 is not roughly the same speed as 24.15066

Question? HOW does rule OUTSIDE-ALL-LANES apply to A0223
Which occurrence? 2
The rule was applied with the assertions

A0226: CONTACT2 is a platform

A0231: CONTACT2 is not known to be AIR

A0338: SIGHTING7 is a sighting of CONTACT2

A0369: SIGHTING7 is not known to be inside a merchantlane

Question? WHY is A0369
Assertion based on the absence of information
Question? Quit
Leaving EXPLAIN

RADAR contact at (64.06 -24.45) Time: 170
Associated with track CONTACT2

A0223: CONTACT2 is definitely not (-.97) a MERCHANT
Question? Quit
Leaving EXPLAIN

RADAR contact at (64.13 -24.44) Time: 180
Associated with track CONTACT2

A0223: CONTACT2 is definitely not (-.98) a MERCHANT
Question? WHY is A0223

29

STAMMER applied the rule(s)
SPEED-CHANGED FASTER-THAN-A-MERCHANT OUTSIDE-ALL-LANES
FASTER-THAN-A-MERCHANT SPEED-CHANGED OUTSIDE-ALL-LANES
FASTER-THAN-A-MERCHANT SPEED-CHANGED FASTER-THAN-A-MERCHANT
OUTSIDE-ALL-LANES FASTER-THAN-A-MERCHANT SPEED-CHANGED
OUTSIDE-ALL-LANES FASTER-THAN-A-MERCHANT SPEED-CHANGED
OUTSIDE-ALL-LANES FASTER-THAN-A-MERCHANT OUTSIDE-ALL-LANES
FASTER-THAN-A-MERCHANT FASTER-THAN-A-MERCHANT CLOSE-POPUP
Question? Quit
Leaving EXPLAIN

RADAR contact at (64.16 -24.43) Time: 185
Associated with track CONTACT2

A0223: CONTACT2 is definitely not (-.99) a MERCHANT
Question? Quit
Leaving EXPLAIN

RADAR contact at (64.24 -24.41) Time: 200
Associated with track CONTACT2

A0223: CONTACT2 is definitely not (-.99) a MERCHANT
Question? Quit
Leaving EXPLAIN

RADAR contact at (64.35 -24.39) Time: 220
Associated with track CONTACT2

A0223: CONTACT2 is definitely not (-.99) a MERCHANT
Question? Quit
Leaving EXPLAIN
Thank you for your interest in the STAMMER system.

i30

~30

F

-(STAMMER)
Welcome to version 2 of the STAMMER TSA system.
What file would you like to take messages from?
(Default is SCENE.ICE): TEST7.DAT

Are you running on a TektronixtNo
Do you have a Tektronix available for display? No

SONAR contact at (63.75 -23.95) Time: 0
Associated with track CONTACT1

Report: CONTACT1 was sighted in the merchant lane LANE2
Question? Quit
Leaving EXPLAIN

RADAR contact at (63.75 -23.95) Time: 0
Associated with track CONTACT1

Report: CONTACT1 was sighted in the merchant lane LANE2
Question? WHERE IS CONT ACT1
We have a sighting of the platform.
((63.75 -23.95))
Question? Quit
Leaving EXPLAIN

SONAR contact at (63.75 -24.09) Time: 15
Associated with track CONTACT1

Report: CONTACT1 was sighted in the merchant lane LANE2
Question? Quit
Leaving EXPLAIN

RADAR contact at (63.75 -24.09) Time: 15
Associated with track CONTACT1

A0300: CONTACT1 is somewhat likely to be (.15) a PATROL
A0299: CONTACT1 is somewhat likely to be (.15) a FISHING
Report: CONTACT1 was sighted in the merchant lane LANE2
Question? WHY is A0300
STAMMER applied the rule(s)
SMALL-CRAFT6
Question? HOW does rule SMALL-CRAFT6 apply to A0300
The rule was applied with the assertions

A0237: CONTACT1 is a contact

A0283: SIGHTING6 is a sighting of CONTACTI

31

A0289: SIGHTING6 is other than a first sighting of its
platform.

A0297: 11.27595 is the range of SIGHTING6

A0275: 11.27595 is less than 16

A0276: 11.27595 is greater than 9

A0282: Signal at SIGHTING6 is WEAK

A0291: 14.82488 is the speed of SIGHTING6

A0298: 14.82488 is not greater than 20

Question? WHERE IS CONTACT1
We have a sighting of the platform.
((63.75 -24.09))
Question? WHERE WAS CONTACT1 at time 10

Estimated from the sightings SIGHTING4 and SIGHTING5
((63.75 -24.04333))
Question? Quit
Leaving EXPLAIN

SONAR contact at (63.75 -24.14) Time: 20
Associated with track CONTACT1

A0300: CONTACT1 is somewhat likely to be (.28) a PATROL
A0299: CONTACT1 is somewhat likely to be (.28) a FISHING
Report: CONTACT1 was sighted in the merchant lane LANE2
Question? Quit
Leaving EXPLAIN

RADAR contact at (63.75 -24.14) Time: 20
Associated with track CONTACT1

A0300: CONTACTI is somewhat likely to be (.39) a PATROL
A0299: CONTACTI is somewhat likely to be (.39) a FISHING
Report: CONTACT1 was sighted in the merchant lane LANE2
Question? Quit
Leaving EXPLAIN

SONAR contact at (63.75 -24.19) Time: 25
Associated with track CONTACTI

A0301: (MODE *X SURFACE) is probably (.48) a (TYPE *X SUB).
A0300: CONTACT1 is probably (.48) a PATROL
A0299: CONTACT1 is probably (.48) a FISHING
Report: CONTACTI was sighted in the merchant lane LANE2

32

Question? Quit
Leaving EXPLAIN

RADAR contact at (63.75 -24.19) Time: 25
Associated with track CONTACT1

Report: CONTACT1 was sighted in the merchant lane LANE2
Question? Quit
Leaving EXPLAIN

SONAR contact at (63.75 -24.24) Time: 30
Associated with track CONTACT1

Report: CONTACT1 was sighted in the merchant lane LANE2
Question? Quit
Leaving EXPLAIN

RADAR contact at (63.75 -24.24) Time: 30
Associated with track CONTACT1

Report: CONTACT1 was sighted in the merchant lane LANE2
Question? WHAT IS CONTACT1
probably PATROL
probably FISHING
Question? Quit
Leaving EXPLAIN

SONAR contact at (63.75 -24.33) Time: 40
Associated with track CONTACT1

A0570: CONTACT1 is probably not (-.54) a MERCHANT
Question? WHY is A0570
STAMMER applied the rule(s)
SPEED-CHANGED SPEED-CHANGED OUTSIDE-ALL-LANES
Question? HOW does rule SPEED-CHANGED apply to A0570
Which occurrence? 1
The rule was applied with the assertions

* ,A0237: CONTACTI is a contact

A0504: SIGHTING12 is a sighting of CONTACT1

- A0516: SIGHTING12 is other than a first sighting of its
platform.

A0519: SIGHTING12 is other than a last sighting of its
platform.

A0588: SIGHTING13 is the successor (in time) of SIGHTING12

33

A0518:15.10729 is the speed of SIGHTING12

A0561: 14.24329 is the speed of SIGHTING13

A0586: 14.24329 is not roughly the same speed as 5.10729

Question? HOW does rule SPEED-CHANGED apply to A0570
Which occurrence? 2
The rule was applied with the assertions

A0237: CONTACT1 is a contact

A0455: SIGHTING11 is a sighting of CONTACT1

A0470: SIGHTING11 is other than a first sighting of its
platform.

A0477: SIGHTING11 is other than a last sighting of its
platform.

A0585: SIGHTING13 is the successor (in time) of SIGHTING11

A0475: 15.10729 is the speed of SIGHTING11

A0561: 14.24329 is the speed of SIGHTING13

A0586: 14.24329 is not roughly the same speed as 15.10729

Question? Quit
Leaving EXPLAIN

RADAR contact at (63.75 -24.33) Time: 40I Associated with track CONTACT1

A0570: CONTACTI is probably not (-.58) a MERCHANT
Question? Quit

• Leaving EXPLAIN

SONAR contact at (63.75 -24.42) Time: 50
Associated with track CONTACT1

A0570: CONTACT1 is very probably not (-.8) a MERCHANT
Question? Quit
Leaving EXPLAIN

RADAR contact at (63.75 -24.42) Time: 50
Associated with track CONTACT1

A0570: CONTACT1 is very probably not (-.82) a MERCHANT
Question? WHAT IS CONTACT1

\1 34

very probably not MERCHANT
probably PATROL
probably FISHING
Question? Quit
Leaving EXPLAIN

SONAR contact at (63.75 -24.52) Time: 60
Associated with track CONTACT1

A0570: CONTACT1 is almost certainly not (-.96) a MERCHANT
Question? Quit
Leaving EXPLAIN

3.2 User's Guide to STAMMER2

To run the STAMMER2 system, all you need do is type
STAMMER2 at the monitor level. This will automatically load
all the programs and data for the STAMMER2 system. As the
programs are loaded, instructions on how to continue will be
printed. Prompted by the system, the user is asked to type
(STAMMER) to start the processing of messages.

Once you have started execution of the STAMMER2system (as
opposed to merely loading it), you will be asked several
questions about files and the characteristics of the
terminal you're at. Questions about files can be answered
with either a file name or a carriage return. All questions
about terminals and related information are to be answered Y
(for yes) or N (for no).

After messages and reports are received, you will be
prompted for input by the explanation system. Instructions
on its use are contained in the next section.

After completing a STAMMER run, or at any BREAK (see next
section), you may leave STAMMER2 by typing (LOGOUT). After a
run is over, you may type (EXPLAIN) to reenter the
explanation system. You may leave STAMMER2 at any point by
typing two control-Cs (AC).

3.3 User's Guide to the Explanation System

STAMMER's explanation system, written within the QH
production system, requires about two dozen productions.
EXPLAIN allows you to ask about the contents of the data

_ Ji

base (memory) and how items were placed in the data base.
You may trace the derivation of any conclusion. When a
display appears, you may use any of the DSPLA function key
commands1 4 to manipulate the picture.

Interactions with STAMMER2 fall into two categories:
commands and queries. Commands allow the user to change
STAMMER's data base. Queries allow the user to inquire
about the data base and about how STAMMER2 reasoned.

A summary of the commands is as follows:

1. SAVE memory <filename>
2. NEW rule <ruledefinition>
3. CHANGE confidence in the rule <rulename>
4. Quit
5. RECAP
6. DISPLAY
7. HELP
8. BREAK

A more complete description of the commands follows:

SAVE
Format: SAVE <filename>
example: SAVE scene.mem
This command allows the user to save the
current state of the data base on a file of
his own choosing.

NEW
Format: NEW rule
This command begins an interactive session
in which the user is led through the
definition of a new rule. During this
interaction the user is asked about the rule
name, its firing conditions, its actions,
and its confidence.

CHANGE
Format: CHANGE confidence in the rule

14
NOSC TN 530, DSPLA--A Graphics Package for Tactical

Situation Assessment (Version II), by GG McIntyre, 15
September 1978. NOSC TNs are informal documents intended

chiefly for internal use.

i36

<r ulename>
The CHANGE command allows the user to modify
the confidence of a selected rule. The
conditions and actions may not be changed.

Q (The system completes this command to form QUIT.)
This command allows the user to exit the
explain system.

RECAP
Format: RECAP
This command gives a summary of all the
conclusions that STAMMER has reached.

DISPLAY
Format: DISPLAY
This command puts the user into graphic
mode. All the commands of DSPLA are now
available to him. To leave this mode the
user types a Q.

HELP
Format: HELP
This gives the user a brief description of
the commands and queries that are available
to him.

BREAK
Format: BREAK
This command puts the experienced user into
a BREAK and allows him to execute any LISP
function or examine system variables.

A summary of the queries is as follows:

1. What..
2. Is..
3. TELL me about..
4. WHERE..
5. WHY is ...
6. HOW does <RULE> apply to <ASSERTION>
7. WHOSE..
8. WHO..

*A more complete description of the queries follows:

WHATFormat: WHAT is (THE AN A) <RELATION> (OF)

Example: WHAT is the COURSE of SIGHTING3

37

Example: WHAT is CONTACTI
This query provides one of several question
formats for asking about entries in the data
base.

is
Formats: IS (THE AN A) <RELATION> (OF)
<ITEM> <ITEM>
IS (THE) <ITEM> (A AN THE) <RELATION> (OF)
<ITEM>
Example: Is RADAR the SOURCE of SIGHTING32
This question form allows the user to ask
about specific entries in the data base.

TELL me about
Format: TELL me about <anything>
Example: TELL me about SIGHTINGS
This is the most flexible query, and allows
the user to ask rules, categories,
relations, or specific facts.

WHERE
Formats: WHERE is <OBJECT>
WHERE was <OBJECT> at <TIME>
Example: WHERE is CONTACT7
With this command the user can ask about the
position of a platform, merchant lane, or
storm. The position may be asked for any-
time, in the future or the past. The answer
is usually a polygon unless the position is
known with certainty. If no time is given,
STAMMER2 assumes that the current time is
the time involved.

WHY
Format: WHY is <ASSERTION>

* Example: WHY is A00345
With this command the user can find out the
primary or immediate reasons that STAMMER2
used to conclude any assertion. He will be
given all the rules involved in the
decision.

HOW
Format: HOW does rule <RULE> apply to
<ASSERTION>
Example: HOW does rule ID-LANE apply to
m0034

assertions or facts were involved in

1. A 38

permitting the rule to help conclude the
given assertion. If the rule is applied in

- I more than one way, the user will be asked to
specify which occurrence he would like to
examine.

WHOSE
Format: WHOSE <RELATION> is <ITEM>
Example: WHOSE TYPE is MERCHANT
This query acts as a partial inverse to the
WHAT query. It may return more than one
object.

WHO
Format: WHO is (THE AN A) <RELATION> (OF)
<ITEM>
Example: WHO is INSIDE STORM3
Example: WHO is HOSTILE
This provides another form for inquiring the
data base that is similar to the WHOSE
query.

Special user inputs

In addition to the standard user inputs, there are a
number of special user inputs. These include the following:

o rubout: deletes the current field entry.

o ? : gives all options for the field.

o AE: deletes the entire line input.

o <escape>: completes current input if only one
completion is possible.

o &VAR: gives all possible values for VAR.

3.4 Programmer's Guide to QH

The interaction is broken up into segments. The segments
are described by productions with the segment name on the
left-hand side and a sequence of fields on the right. The
productions resemble those of BNF and are used in a similar

*way to guide the parsing of the user input. However, user
input is solicited in an ongoing fashion, as the parsing
proceeds. If a string is encountered in the production, it
is treated as a prompting message to be printed to the user.

A 39

At the end of the production there is generally a LISP
expression, indicating what is to be returned as the value
of the interaction segment. This corresponds to the
semantic routine of a compiler.

-The fields in a production may be filled in a number of
Ways:

o ATOM -- with the exceptions below this is treated
as a single key to be matched by user input.

o STRING -- a message to printed to the user. An
initial -in the string will cause a backspace.

o <ATOM> -- a new interaction segment to be called
recursively.

o (=X) -- binds X to the value of the last field
encountered.

o Uf1 f2 ...) -- A sort of OR expression. The system
tries to match any one of the fields fl, f2, ..
The value of the first one matched is returned as
the value of the whole field.

o (fl f2 ...)- an OR of optional fields, one of
which MAY be matched before continuing.

o 1ATOM -- indicates that the value of ATOM is to be
used instead as the current field. To the user,
this option is described (in response to a question
mark) as: a ATOM.

o : -indicates that the next field is the LISP
expression to be evaluated and is the last field.
If this is not present then the value of the last
field is returned as the value of the segment.

o <esc> -- indicates that the next field will simply
be read by the function (READ). There should be no
other alternative field.

The QH user interaction system generator also permits a
number of single control character inputs from the user. If
the user types an <esc> and there is only one way of

* completing his current input, the completion will take place
automatically. If the user types "?", the available options
will be given. If a 1ATOM is an option, the user can find
out the value of ATOM by typing &ATOM. A <rubout> by the
user will delete the current field input, while a "control

40

E" will abort the entire line input.

A list of the right-hand sides of the productions
describing a particular interaction segment is stored on the
property list of the segment name, under the property
QHPRODS. The function QHTAKE is an NLAMBDA nospread which
can be given an initial field sequence.

Define <MEXP> by:

PUTPROP(<MEXP> QHPRODS

(MARY)

(THE (NAME BOOK SISTER) (= X) "of" <MEXP> (= Y) :
(LIST X Y]

Then (QHTAKE "What?" <MEXP> will accept:

MARY ,returning MARY; or:

THE BOOK of DARY ,returning (BOOK MARY); or:

THE NAME of THE SISTER of MARY ,returning (NAME
(SISTER MARY)) ,etc.

Notes. Left recursion, direct or indirect, is not allowed.
If several productions are applicable in which the same key
occurs, the later occurrence supersedes the earlier in
determining which production is followed subsequently.
EXAMPLE: If <MEXP> is defined by PUTPROP(<MEXP> QHPRODS

(MARY : (PRINT 'HI))

(MARY : (PRINT 'BYE]

then only the second production is called when the user
types MARY.

3.5 Programmer's Guide to the Assertion Prettyprinter

ihe assertion prettyprinting mechanism (PRETTYASSR) is, to
a certain extent, under the control of sophisticated users.
PRETTYASSR prints assertions in a format determined by a

41

canned instruction set stored on the relation name of the
assertion. Such canned instructions are called PRINFORMS.

Each relation has a list of prinforms stored on its
property list under the name PRINFORMS. The length of this
list is unrestricted, and the list may be empty. If the list
is empty, a default format is used, which depends on the
length of the assertion.

Each prinform is in the following format:

<prinform> := (<prinspec>+)

<prinspec> := <string> I <number> I <fn call> I T

and is interpreted as follows:

o strings are printed directly

o function calls are evaluated (and, it is assumed,
do some printing)

o numbers cause the (CAR (NTH assertion number)) to
be printed (eg 1 would cause the relation of an
assertion to be printed)

o T causes a carriage return line feed pair

So to print the assertion (CONTACT RED) as "REDl is a
contact", the prinform would be (2 " is a contact" T). (This
prinform would not actually cause the double quotes to be
printed, but would force a new line at the end.)

PRETTYASSR takes three arguments: an assertion node or a
list in assertion form, a prinform selector, and a
confidence override. Only the first argument is required.
The second argument selects which of the (possibly multiple)
prinforms stored on the relation is to be used. If this
argument is missing, or exceeds the number of prinforms
available, the first prinform is selected as a default. The
third argument permits an override on the confidence printed
for the assertion. If the third argument is missing, the

- confidence that is dynamically calculated for the assertion
is used. If an argument is given, the assertion is printed
as if the override confidence were the confidence in the
assertion.

42

3.6 LWES and Modifications

LWES is an INTERLISP implementation of the Warfare
Effectiveness Simulator (WES), written by Frank Zydbel. This
section is intended to serve as a user's guide to LWES,
including the modifications made since the original
implementation to utilize the simulator capabilities as a
scenario and data generator.

3.6.1 Accessing LWES
LWES is written in and runs under INTERLISP. To use LWES,

it is necessary first to invoke LISP, then to load the
programs that make up LWES. To invoke LISP, type (at the
monitor level)

LISP

The LISP prompt is an underscore (left arrow on some
terminals). To load the LWES programs once in LISP, type

LOAD(LWES.LOAD)

No carriage return is necessary. As the files are loaded,
messages will be printed at the terminal. A list of the
necessary files appears later in this report.

3.6.2 Using LWES
LWES does not have the BUILD capability of the original

WES. Instead, a file containing information about selected
units is loaded as the default force for use in simulation.
These default units are grouped into two sides, Blue and
Orange. You may suppress reports from either Blue platforms
or Orange platforms by typing

(SETQ BLUEFLG NIL) or

" (SETQ ORANGEFLG NIL)

respectively, before invoking LWES. Typically, one wishes
to suppress reports from Orange platforms, to more nearly
simulate true conditions.

To invoke LWES, type

1 I (STARTWES)

The system will respond by telling you about available
units and then allowing you to select some or all of these

43A\

units for use in your simulation. You will be queried as to
the inclusion of units and the initial values for attributes
of units you select. "Yes/no" questions can be answered with
a Y or N as appropriate. You should give latitude,
longitude, and course in degrees, speed in knots, and
altitude in feet.

The selection of a home ship is required for the
construction of a sensor report file. Only one platform may
be selected as home ship. Once a home ship is selected, you
will not be asked again.

After selecting participating units, you will reach the
command level of LWES, indicated by a two-asterisk (**)
prompt. At this point, you may give orders to the units you
have selected, or commands to the simulation mechanism. The
following description of the options at this point is drawn
primarily from documentation of the original LWES.

At LWES command level, you may type any input described in
the following BNF:

<input> := <orderpackage> I <simcmd>

3.6.2.1 Simulator commands

<simcmd> := <stopcmd> I <timecmd> I <plotcmd> I
<gocmd>

<stopcmd> := <stoptoken> <cr>
<stoptoken> := STOP I END I Q I QUIT I EXIT I OK

STOP halts the simulation and leaves LWES.

<timecmd> := <timetoken> (<sp> <posint>) <cr>
<timetoken> := TIME I CLOCK I T

TIME is used to find out the present simulated time
and to change the present simulated time. With no

" argument, TIME will return the current time. If a
numeric argument is given, the simulation clock
will be advanced to that time. Time does not move
backward.

44

<plotcmd> := PLOT <cr> I DRAW <cr> I PL <cr>

PLOT draws a rough approximation of the current
situation on the terminal.

<gocmd> := <gotoken> (<sp> <posint>) <cr>
<gotoken> := GO I RUN I MOVE I SIM

GO causes the simulation to be advanced until the
simulator clock equals the numeric argument given
to GO. If the argument is left out, the simulation
advances one clock tick.

3.6.2.2 Orders to platforms

<orderpackage> := <addrline> <order>+ <timespec>
<addrline> := TO <addrlist> I FOR <addrlist> I

: <addrlist>
<addrlist> := <platform/name> (<sp>

<platform/name>)* <cr>
<timespec> := <cr> I <posint> (<sp> <posint>) <cr>
<posint> := 1 1 2 1 3 1 4 I...

Orders are addressed to one or more platforms.
After starting an order package, you must complete
it. Order packages must include at least one order.
The timespec specifies when the order is to be
executed. An empty timespec calls for immediate
execution. A single number as a timespec specifies
when execution of the order is to begin. If two
numbers are given in the timespec, they are taken
to be the starting and ending time, respectively,
of the order package.

<order> := <killord> I <reportord> I <EWord> I
<courseord> I <speedord> I <altord> I
<attackord>

45

<killord> := <killtoken> (<sp> <posint>)
(<sp> <posint>) <cr>

<killtoken> := KILL I CANCEL I FORGET

The KILL order tells the addressed platforms to
forget previously issued orders that become
effective at certain times. The numbers given
to KILL function just like the posints in
timespecs.

<reportord> := <reportoken> <sp> <reportype> <cr>
<reportoken> := REPORT I RPT I R I SEARCH
<reportype> := SELF I SUB I SHIP I PLANE I BASE I

ALL

The REPORT order causes the addressed platforms to
turn on their appropriate sensors (eg SONAR for
SUB) at the specified time to detect non-own-force
platforms of the specified type. When such
detections are made, a report will be printed
at the terminal (assuming that such reports have not
been suppressed). REPORT SELF causes a status
(damage) report to be issued.

<EWord> := EW <cr> I PASSIVE <cr> I PASS <cr> I
E <cr>

The EW order causes the addressed platform to make
reports about passive sensor (intercept, acoustic,
passive sonar) detections.

<courseord> := <coursetoken> <sp> <bearing> <cr>
<coursetoken> := COURSE I HEADING I COMPASS I HDG I

CRS I BRNG I H I C I B
<bearing> := 0 1 1 1 2 1 ... 1 360

The COURSE order causes the addressed platform
to change its course to be bearing. 0 and 360
are true north.

<speedord> := <speedtoken> <sp> <posint> <cr>
<speedtoken> := SPEED I SPD I S I KNOTS

SPEED causes a change in the platform's speed
until it matches posint.

46

*'4dI

<altord> := <altoken> <sp> <posint> <cr>
<altoken> := ALTITUDE I ANGELS I ALT

ALTITUDE causes a change in the altitude of
an aircraft to match the value given. Aircraft
that go below 12 feet crash.

All the value-changing commands (COURSE, SPEED,

and ALTITUDE) use models of the maneuverability
of the platform to cause the change over time.
For example, a ship may be able to change course
by only one degree per second.

<attackord> := <attacktoken> <sp> <attacktype>
<sp> <condition> <sp> <weapon>
<sp> <posint> <cr>

<attacktoken> ATTACK I ATT I A I KIT I ZAP
<attacktype> := SUB I SHIP I PLANE I BASE I ALL
<condition> := NOW I ON CONTACT I IF ATTACKED
<weapon> := the name of a weapon carried by

the addressed unit

ATTACK causes the addressed platforms to attack
the nearest non-own-force platform of the specified
type with posint rounds of the named weapon when the
condition is met. So that the platform will be able
to tell where a suitable victim is, sensors are
turned on if they are not already active. (This has
the effect of issuing a report command for the
attacktype.)

Several notes are in order.

1. If you give a single time in a timespec, that time
is taken as both the starting and ending time for
the order. For example:

** TO CONNOLE

** REPORT ALL
** 5

would turn on all sensors (and report) only at
time 5. No sensing or reports would take place
after time 5.

2. Sensing reports are generated (at present) only on

47

* .-. * *'

nonfriendly units. Sensors are "blind" to own
force units.

3. EW detects prop noise and con detect emissions
from only those units with sensors turned on.
Sensors can only be turned on by the REPORT and
ATTACK orders.

4. Some consistency checks are not made until the
time of order execution. For example, you could
order an attack on planes using a torpedo as
weapon, and the impossibility would not be
discovered until the attack was attempted.

5. Stopping the simulation stops everything -- it is
not possible to resume.

6. The TIME command, if used to reset the clock, DOES
NOT advance the simulation. Nothing happens except
that the value of the clock is changed.

3.6.3 Modifications to Zydbel 's original implementation
There have been several modifications and enhancements to

the original LWES. Most of these have been with the purpose
of using LWES as a scenario and data generator for other
systems.

Originally, LWES simply accepted the forces described in
data files or laboriously entered by hand at the terminal
and used them in its simulation. This required that either
the file be edited or time-consuming hand coding be done to
change even the initial position of any unit. An
initialization routine has been added which permits the user
to construct a simulation using only those units and initial
values which he desires (within certain limits). Unit
selection is still limited to those units defined in the
data file (there is still no BUILD capability), but changing
the canned scenario is much easier.

In an attempt to reduce computational expense, LWES did
not update the location of all units on every simulator
clock tick. This resulted in reports that magnified the
discrete nature of the simulation. A modification has
insured that unit locations are updated every clock tick.

While units were always distinguished by side, no use was
made of the information during report generation. All.1reports were dumped to the terminal without regard to order.
This has been modified so that reports are sorted by side

48

before printing. Additionally, reports from either side may
be suppressed. To use LWES as a scenario and data generator
for other systems, enhancements were added that create files
based on the location of units and reports generated. Two
files are created. The first contains the type and location
of every active unit at every clock tick and is named by the
variable GTHFILE. The second, containing sensor reports
(both active and passive) is named by SENSORFILE. While
these files have default names, the name of the files
created may be changed by resetting the appropriate
variable. Formats for these files are described later.

49

CHAPTER 4
DIRECTIONS FOR FUTURE WORK

The STAMMER2 project represents work on a novel AI problem
-- that of making incremental deductions in realtime based
on information which may be incomplete or out of
chronological order. The demand for real-time performance
is not for user convenience but a fact of the environment in
which it is hoped that STAMMER2 is to be used. Work on
STAMMER2 has highlighted a number of issues in AI which have
not yet been carefully addressed. These include the
following:

o Memory
1. In order to achieve fast access to the data
base, STAMMER2 employs a hashing scheme which
entails redundant storage of information. New
results published in a recent JACM article 1 5 show
how to remove some of this redundancy. This would
yield a space savings at a slight cost in speed.
2. Another problem that several AI workers have
considered without much success is that of aging
and forgetting information. Currently STAMMER2
keeps all the history information in order to
generate appropriate explanation. Some space could
be saved by judicious forgetting.

o control
STAMMER2 has been designed as a forward-chaining
production system. To increase the time efficiency
of the system, a backward-chaining system sometimes
should be used. Typically AI production systems are
either backward or forward chaining. It is possible
to have a system which both forward and backward
chains. One way of implementing such a hybrid
control would be to allow "goals" to occur in the
conditions and actions of rules. This permits the
backward chaining to be simulated by the
forward-chaining component.

15
Optimality of Multiple-Key Hashing Functions, by A

Bolour; JACM, vol 26, 1979.

51

lo lIl''111 1

o Simulation
The creation of scenarios for STAMMER2 is a
time-consuming, laborious task. Another approach,
which would be be an entire project in itself, is
to have a problem-solving simulation generator that
behaves similarly to TALESPIN, a program written by
Jim Meehan of UC116 . In such a simulator, one
would give the initial positions and goals of the
craft and the program would generate the
appropriate messages and actions.

o Learning
The main difficulty with building STAMMER2 has been
the lack of expert advice or expert rules. One
reason for this lack is that there are apparently
no experts! If we were given instances in which
human operators failed to draw the proper
conclusions, however, then a system could be built,
perhaps modeling DENDRAL, which would induce the
necessary rules. Another area where learning could
be applied would be in allowing the system to learn
what it should forget. Forgetting and learning are
closely linked problems.

o confidence
1. Neither MYCIN nor PROSPECTOR deal with the
problem of assigning confidences to constituents of
an nor" conclusion. Since backward-chaining systems
can avoid this problem by setting up subgoals, one
solution for a forward-chaining system is to allow
some back chaining.
2. STAMMER2 introduced an "unless" logical operator
and gave it semantics (confidence manipulating
functions). The semantics need to be extended to
allow multiple arguments.

16
The Metanovel: Telling Stories by Computer, by JR

Meehan, PhD Thesis, Yale University, December 1976.

52

-m ,

o Time
Questions of representing and using temporal
information strike STAMMER2 in several ways.
1. In order that appropriate explanations are
generated, temporal information must be stored or
computed. In either case there is an expense to the
system which must be minimized.
2. Some of the data in the memory are timeless,
some have time but is always true, some informatio.
degrades with time, and other information changes
with time (a reappearance of the frame problem in
the context of temporal knowledge). Perhaps a
taxonomy of relations based on the time property of
the relation would be useful.
3. A distinction should be drawn between system
time and world time. This might entail grouping
data into events.

o Space
An efficient way of representing global spatial
situations such as land masses is needed in
STAMMER2.

o Natural Language
For the most part STAMMER2 avoids the serious
problem of natural language processing.
Nevertheless, an improvement in the style of the
system's output would be a convenience to the
casual user.

53

Appendix I. RULES IN THE DEMONSTRATION SYSTEM

NAME: INHERIT

CONDITIONS:
*UNKNOWN is really *PLAT
*PLAT is a *TYP
*PLAT is *IDl
*PLAT is *IDMP
*PLAT is a *CLS
*PLAT is *MED

ACTION:
*UNKNOWN is a *TYP
*UNKNOWN is *IDl
*UNKNOWN is *IDMP
*UNKNOWN is a *CLS
*UNKNOWN is *NED

CONFIDENCE: 1.0

NAME: NOT-LAST-SIGHTING

CONDITIONS:
*Sl is a sighting of *PLAT
*S2 is a sighting of *PLAT
NOT

*Sl is the same as *s2
*S1 occurred at *Tl
*$2 occurred at *T2
*Tl is less than *T2
UNLESS

*SI is other than a last sighting of its

platform.

ACTION:
*Sl is other than a last sighting of its platform.

CONFIDENCE: 1.0

NAME: NOT-FIRST-SIGHTING

CONDITIONS:
*Sl is a sighting of *PLAT
*S2 is a sighting of *PLAT
NOT

*Sl is the same as *S2
*Sl occurred at *Tl
*$2 occurred at *T2

55. .

*T2 is less than *Tl
UNLESS

*S1 is other than a first sighting of its
platform.

ACTION:
*Sl is other than a first sighting of its platform

CONFIDENCE: 1.0

NAME: FIRST-VIEW

CONDITIONS:
*Sl is a sighting of *PLAT
UNLESS

*SI is other than a first sighting of its
platform.

ACTION:
*S1 is the first sighting of *PLAT

CONFIDENCE: .99

NAME: NOT-KNOWN-COMBATANT

CONDITIONS:
*CONT is a contact
*Sl is a sighting of *CONT
UNLESS

*SI is reachable from *52
even considering possible patrol overflights
*S2 is a sighting of *PLAT
*PLAT is MIL-BATTLE
UNLESS

*PLAT is a OWNSHIP

ACTION:
*CONT is a MERCHANT

CONFIDENCE: .45

NAME: REACHABLE

CONDITIONS:
*CONT is a contact
*S1 is a sighting of *CONT
*52 is a sighting of *PLAT
NOT

*PLAT is the same as *CONT
UNLESS

A i56

*PLAT is a OWNSHIP
UNLESS

*PLAT is a OWNSHIP
*$1 is reachable from *S2
ignoring contrary evidence.
UNLESS

The ship in *Sl is the ship in *S2
because of an intersecting patrol overflight

ACTION:
*S1 is reachable from *$2
even considering possible patrol overflights

* * CONFIDENCE: .97

NAME: SIMPLY-REACHABLE

CONDITIONS:
*CONT is a contact
*Sl is a sighting of *CONT
*S2 is a sighting of *PLAT
*PLAT is MIL-BATTLE
NOT

*CONT is the same as *PLAT
UNLESS

*PLAT is a OWNSHIP
*Pl is the position of *Sl
*P2 is the position of *S2
*Sl occurred at *T1
*S2 occurred at *T2

A ship at *Pl at time *Tl could
reach *P2 at time *T2
by travelling at top speed (or less).

ACTION:
*Sl is reachable from *$2
ignoring contrary evidence.

CONFIDENCE: .98

NAME: POSS-RPT

CONDITIONS:
*PTL is a patrol

f*CONT is a contact
*Sl is a sighting of *CONT

N*S2 is a sighting of *PLAT
*PLAT is MIL-BATTLE
UNLESS

*PLAT is a OWNSHIP

tI 57

*PTL is the source of *$2
NOT

*$1 is the same as *S2
UNLESS

*CONT is dissimilar to *PLAT

ACTION:
One of the reports from *PTL concerns *CONT

CONFIDENCE: .95

NAME: BLOCKER

CONDITIONS:
*CONT is a contact
*Sl is a sighting of *CONT
*S2 is a sighting of *PLAT
*PLAT is NIL-BATTLE
NOT

*CONT is the same as *PLAT
UNLESS

*PLAT is a OWNSHIP
*PTL is a patrol
UNLESS

One of the reports from *PTL concerns *CONT
*S3 is a sighting of *PTL
*$3 is other than a last sighting of its platform.
*S4 is the successor (in time) of *$3
*Pl is the position of *$1Si*P2 is the position of *$2
*P3 is the position of *S3
*P4 is the position of *S4
. i*S t occurred at *To

. *S2 occurred at *T2
*S3 occurred at *T3
*S4 occurred at *T4
OR

The path from *Pl to *P2
does cross the path from
*P3 to *P4

The path from *Pl to *P2
does graze the path from

*P3 to *P4
NOT

A ship moving from *P2 to *Pl
between the times *T2 and *T1

could have avoided sighting by a patrol travellingfrom
*P3 to *P4 between *T3 and *T4

58

lL

by traversing the patrol viewing area before the
flight

NOT
A ship moving from *P2 to *Pl

between the times *T2 and *Tl
could have avoided sighting by a patrol travelling
from
*P3 to *P4 between *T3 and *T4
by traversing the patrol viewing area after the

flight

ACTION:
The ship in *Sl is the ship in *$2
because of an intersecting patrol overflight

CONFIDENCE: -.9

NAME: CREATEDETECT

CONDITIONS:
*SGT is a sighting of *PLAT
EW is the source of *SGT
UNLESS

*PLAT is a detection

ACTION:
*PLAT is a detection

CONFIDENCE: 1.0

NAME: CREATECONTACT

CONDITIONS:
*SGT is a sighting of *PLAT
RADAR is the source of *SGT
UNLESS

*PLAT is a contact

ACTION:

*PLAT is a contact

CONFIDENCE: 1.0

NAME: CREATEPLAT

CONDITIONS:
*SGT is a sighting of *PLAT
UNLESS

*PLAT is a OWNSHIP
UNLESS

59

*PLAT is a platform

ACTION:
*PLAT is a platform

CONFIDENCE: 1.0

NAME: SMALL-CRAFT9

CONDITIONS:
*WHO is a contact
*Sl is the first sighting of *WHO
RADAR is the source of *SI
*Rl is the range of *$1
*Rl is less than 8

Signal at *$1 is STRONG

ACTION:
*WHO is a SUB
*WHO is SURFACE

CONFIDENCE: .5

NAME: SMALL-CRAFT6

CONDITIONS:
*X is a contact
*SIGHT is a sighting of *X
*SIGHT is other than a first sighting of its

platform.*R is the range of *SIGHT
*R is less than 16

*R is greater than 9
Signal at *SIGHT is WEAK

*: *SPD is the speed of *SIGHT
UNLESS

*SPD is greater than 20

ACTION:
OR

*X is a FISHING
*X is a PATROL
(MODE *X SURFACE) is a (TYPE *X SUB)

CONFIDENCE: .15

NAME: SMALL-CRAFT5

CONDITIONS:
*WHO is a contact

60

*$1 is a sighting of *WHO
*Sl is other than a first sighting of its platform
RADAR is the source of *S1
*RANGE is the range of *S1
*RANGE is less than 16
*RANGE is greater than 9
Signal at *$1 is WEAK
*SPEED is the speed of *Sl
*SPEED is greater than 20

ACTION:
OR

*WHO is a SUB
*WHO is a PATROL

CONFIDENCE: .3

NAME: SMALL-CRAFT4

CONDITIONS:
*UNKNOWN is a contact
*SIGHTING1 is a sighting of *UNKNOWN
*SIGHTING1 is *DIST miles from land
RADAR is the source of *SIGHTING1
*RANGE is the range of *SIGHTING1
*RANGE is less than 9
*RANGE is greater than 3

Signal at *SIGHTING1 is WEAK
*DIST is less than 50

ACTION:

OR *UNKNOWN is a SUB
*UNKNOWN is a SHORE-PATROL
*UNKNOWN is a PLEASURE
*UNKNOWN is a COMMERCIAL
*UNKNOWN is a LANDING

CONFIDENCE: .1

NAME: SMALL-CRAFT3

CONDITIONS:
*UNKNOWN is a contact

.4 *SIGHTING is a sighting of *UNKNOWN
*SIGHTING is *DIST miles from land
RADAR is the source of *SIGHTING
*RANGE is the range of *SIGHTING
*RANGE is less than 9
*RANGE is greater than 3

61

Signal at *SIGHTING is WEAK
*DIST is greater than 50

ACTION:
*UNKNOWN is a SUB

CONFIDENCE: .35

NAME: SMALL-CRAFT2

CONDITIONS:
*UNKNOWN is a contact
*SIGHTING is a sighting of *UNKNOWN

* *SIGHTING is other than a first sighting of its
platform.

RADAR is the source of *SIGHTING
Signal at *SIGHTING is WEAK
*SPEED is the speed of *SIGHTING
*UJNLESS *

*SPEED is greater than 3

ACTION:
* O R * * N N W s a D B I

*UNKNOWN is a DEBRI

*UNKNOWN is a BUOY

CONFIDENCE: .12

NAME: SMALL-CRAFTl

CONDITIONS:
*UNKNOWN is a contact
*SIGHTING is a sighting of *UNKNOWN
*SIGHTING is other than a first sighting of its

platform.
RADAR is the source of *SIGHTING
*RANGE is the range of *SIGHTING

* *RANGE is less titan 3
Signal at *SIGHTING is WEAK
*SPEED is the speed of *SIGHTING
*SPEED is greater than 3

ACTION:
*UNKNOWN is a SUB

* *OR*
*UNKNOWN is PERISCOPEj *UNKNOWN is SNORKEL

CONFIDENCE: .6

* 62

NAME: ID-LANE

CONDITIONS:
*LANE is a merchant lane
*SHIP is a platform
*SIGHTING is a sighting of *SHIP

The location of *LANE is *LANELOC
*POS is the position of *SIGHTING
*POS is in the merchantlane *LANELOC

ACTION:

*SIGHTING is inside a merchantlane

CONFIDENCE: 1.0

NAME: INSIDE-A-STORM

CONDITIONS:
*SHIP is a platform
*SIGHTING is a sighting of *SHIP
*STORM is a STORM
*POS is the position of *SIGHTING
The location of *STORN is *STMLOC
*POS is inside *STMLOC

ACTION:
*SHIP is a MERCHANT

CONFIDENCE: -.25

NAME: CLOSE-POPUP

CONDITIONS:
*SHIP is a contact
*SIGHTING is the first sighting of *SHIP
*RANGE is the range of *SIGHTING
*RANGE is less than 12

ACTION:
*SHIP is a MERCHANT

CONFIDENCE: -.2

NAME: DISTANT-POPUP

CONDITIONS:
*SHIP is a contact
*SIGHTING is the iirst sighting of *SHIPI i *RANGE is the range of *SIGHTING

63

*RANGE is greater than 30

ACTION:
*SHIP is a MERCHANT

CONFIDENCE: -.2

NAME: COURSE-CHANGED

CONDITIONS:
*SHIP is a contact
*SIGHTING1 is a sighting of *SHIP
*SIGHTING1 is other than a first sighting of its

platform.
*SIGHTING1 is other than a last sighting of its

platform.
*SIGHTING2 is the successor (in time) of

*SIGHTING1
*COURSE1 is the course of *SIGHTING1
*COURSE2 is the course of *SIGHTING2
UNLESS

*COURSE2 is roughly the same course as
*COURSEl

ACTION:
*SHIP is a MERCHANT

CONFIDENCE: -.3

NAME: SPEED-CHANGED

CONDITIONS:
*SHIP is a contact
*SIGHTING is a sighting of *SHIP
*SIGHTING is other than a first sighting of its

platform.
*SIGHTING is other than a last sighting of its

* platform.
*SIGHTING2 is the successor (in time) of *SIGHTING
*SPEED1 is the speed of *SIGHTING
*SPEED2 is the speed of *SIGHTING2
UNLESS

*SPEED2 is roughly the same speed as *SPEEDl

ACTION:
*SHIP is a MERCHANT

CONFIDENCE: -.3

NAME: FASTER-THAN-A-MERCHANT

4\ 64

CONDITIONS:
*SHIP is a contact
*SIGHTING is a sighting of *SHIP
*SIGHTING is other than a first sighting of its

platform.
*SPEED is the speed of *SIGHTING
*SPEED is greater than 25

ACTION:

*SHIP is a MERCHANT

CONFIDENCE: -.25

NAME: SLOWER-THAN-A-MERCHANT

CONDITIONS:
*SHIP is a contact
*SIGHTING is a sighting of *SHIP
*SIGHTING is other than a first sighting of its

platform.
*SPEED is the speed of *SIGHTING
*SPEED is less than 9

ACTION:
*SHIP is a MERCHANT

CONFIDENCE: -.15

NAME: MATCH-PLAT

CONDITIONS:
*SGTl is a sighting of *PLAT1
*SGTI is other than a first sighting of its

platform.
*SGT2 is a sighting of *PLAT2
UNLESS

* *PLAT1 is the same as *PLAT2
UNLESS

*SGT2 is other than a last sighting of its
platform.

*CRSl is the course of *SGTI
*SPDI is the speed of *SGTl
*POSI is the position of *SGTl
*SGTl occurred at *Tl
*POS2 is the position of *SGT2

4 *SGT2 occurred at *T2
*T2 is less than *Tl
The course from *POS2 to *POSI is *CRS2
To move from *POS2 to *POSI

65

between *T2 and *Tl implies a speed of *SPD2
*CRS2 is roughly the same course as *CRSl
*SPD2 is roughly the same speed as *SPDl

ACTION:
*PLAT1 is really *PLAT2

CONFIDENCE: .5

NAME: OUTSIDE-ALL-LANES

CONDITIONS:
*SHIP is a platform
UNLESS

*SHIP is AIR
*SIGHTING is a sighting of *SHIP
UNLESS

*SIGHTING is inside a merchantlane

ACTION:
*SHIP is a MERCHANT

CONFIDENCE: -.08

66
-i °°~

Appendix II. TECHNICAL DATA BASE CONTENT

A0175: VIKING is a S-3A
A0174: VIKING is AIR
A0173: VIKING is a RECONNISANCE
A0172: VIKING is MIL-AUXIL
A0171: VIKING is FRIEND
A0170: VIKING is a platform
A0169: SEASPRITE is a SH-2F
A0168: SEASPRITE is AIR
A0167: SEASPRITE is a HELICOPTER
A0166: SEASPRITE is MIL-BATTLE
A0165: SEASPRITE is FRIEND
A0164: SEASPRITE is a platform
A0163: ORION is a P-3C
A01624 ORION is AIR
A0161: ORION is a RECONNISANCE
A0160: ORION is MIL-AUXIL
A0159: ORION is FRIEND
A0158: ORION is a platform
A0157: HORMONE is a KA-25
A0156: HORMONE is AIR
A0155: HORMONE is a HELICOPTER
A0154: HORMONE is MIL-BATTLE
A0153: HORMONE is HOSTILE
A0152: HORMONE is a platform
A0151: HAWKEYE is a E-2B
A0150: HAWKEYE is AIR
A0149: HAWKEYE is a RECONNISANCE
A0148: HAWKEYE is MIL-AUXIL
A0147: HAWKEYE is FRIEND
A0146: HAWKEYE is a platform
A0145: HARRIER is a AV-SA
A0144: HARRIER is AIR
A0143: HARRIER is a FIGHTER
A0142: HARRIER is MIL-BATTLE
A0141: HARRIER is FRIEND
A0140: HARRIER is a platform
A0139: FOXBAT is a MIG25
A0138: FOXBAT is AIR
A0137: FOXBAT is a FIGHTER
A0136: FOXBAT is MIL-BATTLE
A0135: FOXBAT is HOSTILE
A0134: FOXBAT is a platform
A0133: CORSAIR is a A-7
A0132: CORSAIR is AIR
A0131s CORSAIR is a FIGHTER
A0130: CORSAIR is MIL-BATTLE
A0129: CORSAIR is FRIEND

67

A0128: CORSAIR is a platform
A0127: BACKFIRE is a RV-G
A0126: BACKFIRE is AIR
A0125: BACKFIRE is a BOMBER
A0124: BACKFIRE is MIL-BATTLE
A0123: BACKFIRE is HOSTILE
A0122: BACKFIRE is a platform
A0121: RATHBURNE is a KNOX
A0120: RATHBURNE is SURFACE
A0119: RATHBURNE is a FRIGATE
A0118: RATHBURNE is MIL-BATTLE
A0117: RATHBURNE is FRIEND
A0116: RATHBURNE is a platform
A0115: YANK-i is a YANKEE
A0114: YANK-I is SUB
A0113: YANK-I is a SUB
A0112: YANK-i is MIL-BATTLE
A0111: YANK-I is HOSTILE
A0110: YANK-i is a platform
A0109: WAINWRIGHT is a BELKNAP
A0108: WAINWRIGHT is SURFACE
A0107: WAINWRIGHT is a CRUISER
A0106: WAINWRIGHT is MIL-BATTLE
A0105: WAINWRIGHT is FRIEND
A0104: WAINWRIGHT is a platform
A0103: SUNFISH is a STURGEON
A0102: SUNFISH is SUB
A0101: SUNFISH is a SUB
A0100: SUNFISH is MIL-BATTLE
A0099: SUNFISH is FRIEND
A0098: SUNFISH is a platform
A0097: PROVORNY is a KASHIN
A0096: PROVORNY is SURFACE
A0095: PROVORNY is a DESTROYER
A0094: PROVORNY is MIL-BATTLE
A0093: PROVORNY is HOSTILE
A0092: PROVORNY is a platform
A0091: MINSK is a KIEV
A0090: MINSK is SURFACE
A0089: MINSK is a CARRIER
A0088: MINSK is MIL-BATTLE
A0087: MINSK is HOSTILE
A0086: MINSK is a platform
A0085: MEYERCORD is a KNOX
A0084: MEYERCORD is SURFACE

* A0083: MEYERCORD is a FRIGATE
A0082: MEYERCORD is MIL-BATTLE

* A0081: MEYERCORD is FRIEND
A0080: MEYERCORD is a platform
A0079: LAWRENCE is a CHAS.ADAMS

68

A0078: LAWRENCE is SURFACE
A0077: LAWRENCE is a DESTROYER
A0076: LAWRENCE is MIL-BATTLE
A0075: LAWRENCE is FRIEND
A0074: LAWRENCE is a platform
A0073: HASSAYAMPA is a NEOSHO
A0072: HASSAYAMPA is SURFACE
A0071: HASSAYAMPA is a OILER
A0070: HASSAYAMPA is MIL-AUXIL
A0069: HASSAYAMPA is FRIEND
A0068: HASSAYAMPA is a platform
A0067: HALSEY is a LEAHY
A0066: HALSEY is SURFACE
A0065: HALSEY is a CRUISER
A0064: HALSEY is MIL-BATTLE
A0063: HALSEY is FRIEND
A0062: HALSEY is a platform
A0061: ECHO-i is a ECHOII
A0060: ECHO-I is SUB
A0059: ECHO-i is a SUB
A0058: ECHO-i is MIL-BATTLE
A0057: ECHO-i is HOSTILE
A0056: ECHO-i is a platform
A0055: DESNA is a KAZBEK
A0054: DESNA is SURFACE
A0053: DESNA is a OILER
A0052: DESNA is MIL-AUXIL
A0051: DESNA is HOSTILE
A0050: DESNA is a platform
A0049: CONSTELLATION is a KITTYHAWK
A0048: CONSTELLATION is SURFACE
A0047: CONSTELLATION is a CARRIER
A0046: CONSTELLATION is MIL-BATTLE
A0045: CONSTELLATION is FRIEND
A0044: CONSTELLATION is a platform
A0043: ADMIRAL MAKAROV is a KRESTAII
A0042: ADMIRAL MAKAROV is SURFACE
A0041: ADMIRAL MAKAROV is a CRUISER
A0040: ADMIRAL MAKAROV is MIL-BATTLE
A0039: ADMIRAL MAKAROV is HOSTILE
A0038: ADMIRAL MAKAROV is a platform
A0037: ADMIRAL GOLOVKO is a KYNDA
A0036: ADMIRAL GOLOVKO is SURFACE
A0035: ADMIRAL GOLOVKO is a CRUISER
A0034: ADMIRAL GOLOVKO is MIL-BATTLE
A0033: ADMIRAL GOLOVKO is HOSTILE
A0032: ADMIRAL GOLOVKO is a platform
A0031: CONNOLE is a KNOX
A0030: CONNOLE is a FRIGATE
A0029: CONNOLE is MIL-BATTLE

69

-1

A0028: CONNOLE is FRIEND
A0027: CONNOLE is a OWNSHIP
A0026: The location of LANE3 is((55.66 -39.84)
(57.23 -36.36) (58.56 -32.89) (59.77 -29.01)
(61.17 -23.79) (62.08 -19.37) (62.99 -13.96)
(63.79 -6.72))
A0025: The location of LANE2 is ((56.04 -42.25)
(58.45 -37.9) (60.37 -33.75) (61.85 -29.94)
(63.19 -26.0) (64.01 -22.99))
A0024: The location of LANEl is((68.93 -13.82)
(68.39 -16.57) (66.79 -23.11) (66.11 -25.32)
(65.02 -28.53) (64.19 -30.47) (63.34 -32.47)
(62.11 -35.08) (60.64 -37.76) (59.21 -40.16)
(58.14 -41.7))
A0023: ST.JOHNS is the starting port of LANE3
A0022: MURMANSK is the destination port of LANE3
A0021: ST.JOHNS is the starting port of LANE2
A0020: REYKJAVIK is the destination port of LANE2
A0019: MURMANSK is the starting port of LANE
A0018: REYKJAVIK is the destination port of LANE1
A0017: LANE3 is a merchant lane
A0016: LANE2 is a merchant lane
A0015: LANE is a merchant lane

.7

70

Appendix III. FORMAT OF LWES-PRODUCED FILES

LWES produces two files during a run. These are the sensor
report file and the ground truth location file. The actual
file names are determined by the values of the variables
SENSORFILE and GTHFILE, which may be set before beginning a
run in LWES.

The ground truth file is intended for use with the
Baseline Correlation Program. At present, the file format
(subject to change) is a series of platform entries, each of
which consists of a type indicator (eg FF, CLG) followed by
latitude, longitude, altitude, and time. These platform
entries are sorted by time (ascending) and, within each time
class, by platform name (despite the fact that platform name
is not included in the file).

The sensor report file is used by STAMMER2. Entries in
this file are in one of four formats. During the LWES run,
one ship is selected as the home ship. This should be the
same one used in STAMMER2. Sensor detections by the home
ship are labelled with the detecting sensor type, while
detections by other ships are merely labelled as "external."
Sensor detections can also be divided into "precise" and
"imprecise" position classes. Radar and sonar give precise
locations for the detected platforms, while EW intercepts
provide only line-of-bearing information. In the case of
external platforms, this problem is even greater.

Report classifications and formats are as follows:

o own ship/active--(detectedname sensortype lat lon
time)

o own ship/passive--(detectedname EW bearing
detectedsensor time)

o external/active--(detectedname EXTERNAL lat lon
time)

o external/passive--(detectedname EXTERNAL bearing
detectingname detectinglat detectinglon time)

*11
.. . - 71

Appendix IV. MATHEMATICAL TECHNIQUES

The methods were those used in STAMMER [I] with the
addition of a formula for computing latitude and longitude
given range and bearing from a reference point. The
derivation is as follows.

Assume, without loss of generality, that units are chosen
so that the earth has radius 1. First suppose the reference
point has longitude zero. Let P be the reference point and Q
the target point. We will also use P and Q as the position
vectors of these points. Thus P and Q are unit vectors. Let
B be the bearing from P to Q. Let 0 be the angle subtended
at the Earth's center by P and 0. (This is easily computed
from the range.) Let d be a unit vector tangent to the Earth
at P, aimed toward Q as shown:

P
41 Q

We see that Q/cosi = P + d tan ', by vector algebra, or

Q = P cos * + d sin 0. (1)

Let k' be a unit vector tangent to the Earth at P, in a
northerly direction. The unit vector j points due east from
P.

We may write
d = k' cos B + j sin B. (2)

If we let e be the latitude of P and k be a unit vector
parallel to the Earth's axis, in the northward direction,

7then

k' = -i sin a + k cos 0. (3)

We may now combine 1, 2, and 3 to get

Q = cos p (i cos e + k sin e) + sin [cos B(-i sin e +
k cos 0) + j sin B].

Suppose now that 02 and *2 are the derived latitude and

longitude, respectively, of Q. We have

Q - i cos 62 cos 02 + J cos 62 sin 02 + k sin e2 .

By equating corresponding coefficients of the two vector
equations for Q, we may derive the following formulae:

02 = sin"I [sine cos + cosB cose sin*] (4)
02 = sin-1 [sinB sin* / cose 2] (5)
02 = cos- [(cose cos - cosB sine sin) / cose2] (6)

Equations 5 and 6, while seemingly redundant, are both
necessary because arcsin and arccos are ambiguous. We can
combine them into one unambiguous formula by writing

02 - S cos 1 [(cose cos* - cosB sine sin*) / cose 2l (7)

where

S = 1 if (sin B sin 1 / cose 2) geq 0
* -1 otherwise.

Finally, we consider the situation in which the longitude
of the reference point is non-zero. By a suitable rotation
of coordinates about the Earth's axis, we can reduce this
case to the previous one. Let 01 be the longitude thereby
obtained, using 7. To derive the correct longitude in the
original coordinate system, we must now rotate back, giving
us

02- 02, +0

where is the longitude of the reference point. Thus, in
general,

cos " [(cose cos Cos B sine sin ') / cos 02].

t4~ 74

REFERENCES

1. NOSC TD 252, STAMMER: System for Tactical
Assessment of Multisource Messages, Even Radar, by
RJ Bechtel and PH Morris, May, 1979.

2. Computer-Based Medical Consultations: MYCIN, by EH
Shortliffe; Elsevier, 1976.

3. The HARPY Speech Understanding System, by BT
Lowerre and R Reddy; Trends in Speech Recognition,
WA Lea, ed, Prentice-Hall, 1979.,

4. The HEARSAY Speech Understanding System: An
Example of the Recognitio Process, by DR Reddy,
LE Erman, RD Fennell, anyRB Neely; Proceedings of
the Third International Joint Conference on
Artificial Intelligence, Stanford CA, 1973, p
185-193.

5. Technical Report 136, Semantic Network
Representation in Rule-Based Inference Systems, by
RO Duda, PE Hart, NJ Nilsson, and GL Sutherland,
SRI International, 1977.

6. The Art of Computer Programming, Vol 3: Sorting
and Searching, by D Knuth, Addison-Wesley, 1975.

7. Content Addressable Parallel Processors, by CC
Foster, Van Nostrand Reinhold, 1976.

8. INTERLISP Reference Manual, by W Teitelman, Xerox
Palo Alto Research Center, 1978.

9. LUCID, A Nonprocedural Language with Iteration, by
EA Ashcroft and WW Wadge; Communications of the
Association for Computing Machinery, vol 20, 1977,
p 519.

10. Technical Report 114A, An Asynchronous ProgrammingLLanguage and Computing Machine, by Arvind, KP
Gostelow, and W Plouffe, Information and Computer
science Department, University of California,
Irvine, 1978.

11. Spontaneous Computation and its Role in AI
Modeling, by C Rieger; Patten-Directed Inference
Systems, DA Waterman and F Hayes-Roth, ed,
Academic Press, 1978.

~r 75

12. Transition Network Grammars for Natural Language
Analysis, by WA Woods; Communications of the
Association for Computing Machinery, vol 13, 1970,
p 591.

13. BBN Report 2378, The LUNAR Sciences Natural
Language Information System: Final Report, by WA
Woods, RM Kaplan, and BL Nash-Webber; Bolt,
Beranek, and Newman, Inc, 1972.

14. NOSC TN 530, DSPLA--A Graphics Package for
i actical Situation Assessment (Version II), by GG
McIntyre, 15 September 1978.

15. Optimality of Multiple-Key Hashing Functions, by A
Bolour; Journal of the Association for Computing
Machinery, vol 26, 1979.

16. The Metanovel: Telling Stories by Computer, by JR
Meehan, PhD Thesis, Yale University, December
1976.

76

INDEX

Actions 14
Addressable objects 18
Aging information 51
AND 5
ASKUSER 3, 24
Assertion elements 9, 11
Assertion format 7
Assertion format, old 9
Assertion items 9
Assertion node 9, 11, 21
Assertion prettyprinter 14, 15
Assertions 5, 9, 11, 15, 20, 21
Associative memory 7
ATN 24

Back associations 9, 11, 13
Backward chaining 51

Channels 19
Combinatorial hashing 6, 7
Conditions 14
Confidence 5, 9, 14, 21, 51
Confidence cycles 22
Confidence factors 8
Confidence mapping 22
Connectives 5, 15
Content addressable 10, 12
Content addressable memory 7
Context switching 8
Coroutines 8

Data-driven 16
Dataflow, dataflow languages 18
Demons 20
DENDRAL 51
Derivation 5
Derivation graph 22
Derivation tree 22
Derivation trees 21
Dynamic data base 7
Dynamic data structures 18

* ENDSTREAM 19
Expert advice 51
Explanation 51
Explanation system 5

77

4..

Forgetting information 51

Forward chaining 51

Forward chaning 51
FREEZE 19
Function key commands 36

Goals 51
Graphics 3, 9

HARPY 5
Hashing 6, 7, 10, 20, 51
HEARSAY 5

Incremental deduction 8, 20
Incremental deductions 51
Interpreter 16
Intersection 10

Location addressable 10
LUCID 18
LUNAR 24
LWES 3, 25

MAPSTREAM 19
Message monitor 26
Messages 16, 25 V
MYCIN 5, 51

NEWSTREAM 19
NOT 3, 5

OR 3, 5, 51
Oracles 23

Parallel processing 3
Partial retrieval 9
Partial specification 10
Production system 5, 51
Productions 24
PROSPECTOR 5, 51
Pulsar 21
PULSE 21
PUTSTREAM 19

QH 24

Redundant computation 17, 18
Redundant storage 51
Retrieval specifications 12, 13
ROSIE 8

78I'..

Rule based language 7, 8
Rule evaluation 8
Rule interpretation 7
Rule interpreter 16, 20, 23
Rule selection 20

* IRule-based systems 16
Rules 14

Scenario generator 3
Scenarios 3, 25, 51
Semantic loops 6, 8, 22
Semantics 18, 51

*Sensor reports 25
Simulation generator 51
Simulator 51
SOMEPULSE 21
Spatial situations 52
Stream 21
Stream mechanism 20
Stream of confidences 21
Stream operators 18
Streams 3, 16, 18, 20
Streams, defined 18
Subgoals 51
Suspension 3, 8, 19
Suspension selection 20
Suspensions 20, 21

TALESPIN 51
Temporal information 52
Threshold value 21
Track identification 4

UNFREEZE 19
UNLESS 5, 51
User interaction 24

Variable 15
Variables in a rule 14

79

INITIAL DISTRIBUTION

NAVAL ELECTRONIC SYSTEMS COMMAND ROME AIR DEVELOPMENT CENTER
CODE 330 (CC STOUT) (2) GRIFFIS AF8, NY 13441
CODE PME-108 (D SCHUTZER) ISIS (N FOWLER III)

NAVAL AIR DEVELOPMENT CENTER

NAVAL RESEARCH LABORATORY CODE 6021 (LT S HARRIS) (2)
CODE 7509 (JH KULBACK)
CODE 7932 (HL WIENER) MITRE CORP

PO BOX 208
DEFENSE ADVANCED RESEARCH PROJECTS BEDFORD, MA 01730
AGENCY CARL ENGLEMAN

IPTO (DR R ENGELMORE) (2)
IPTO (LCDR AJ DIETZLER) (2) ESL INC
IPTO (DR R KAHN) 495 JAVA DR

SUNNYVALE, CA 94086
SYSTEMS DEVELOPMENT CORP GK KIRENUDJIAN
3065 ROSECRANS PLACE
SAN DIEGO, CA 92110 SYSTEMS CONTROL INC

RJ BECHTEL (4) 1801 PAGE MILL RD
PH MORRIS (4) PALO ALTO, CA 94304
DF KIBLER (4) JR PAYNE

RP WISHNER
MITRE CORP
WESTGATE RESEARCH PARK SYSTEMS EXPLORATION INC
MC LEAN, VA 22101 1340 MUNRAS AVE

JW BENOIT MONTEREY, CA 93940
R BUTTERWORTH

RAND CORP G GIBBONS
1700 MAIN STREET
SANTA MONICA, CA 90406 SRI INTERNATIONAL

G MARTINS 333 RAVENSWOOD AVE
J GILLOGLY MENLOW PARK, CA 94025

E SACERDOTI
BOLT, BERANEK AND NEWMAN J OLMSTEAD
50 MOULTON STREET D SAGALOWICZ
CAMBRIDGE, MA 02138

RJ BOBROW CTEC INC
NR GREENFIELD 7777 LEESBURG PIKE
OSELFRIDGE FALLS CHURCH, VA 22043
J VITTAL KD SHERE

COMPUTER CORPORATION OF AMERICA NAVAL POSTGRADUATE SCHOOL
575 TECHNOLOGY SQ MONTEREY, CA 93940
CAMBRIDGE, MA 02139 CODE 55 PK (G POOCK)

GA WILSON CODE 52 RL (RJ ROLAND)
JB ROTHNIE

DEFENSE TECHNICAL INFORMATION CENTER (12)

VERAC INC
4901 MORENA BLVD
SAN DIEGO, CA 92117

C MOREFIELD
J NASH
J TIERNAN

80
/m

